1 Introduction

1.1 Quantum Magnets in the Magnetic Field

1. Magnetization Plateau

Field induced spin gap ⇒ Disordered Phase

2. Field Induced Antiferromagnetic Phase

(a) Quasi-One-Dimensional System

Magnetic Field > Spin Gap ⇒ Tomonaga-Luttinger Liquid

+ Weak interchain interaction

Antiferromagnetic Long Range Order
Disorder effects on the quantum spin systems in the magnetic field

- Revived spins \Rightarrow magnetic long range order
- Localized singlet pairs = plateau formation \Rightarrow Suppresss the magnetic order

Competition

\Downarrow

Field induced reentrant transition
2 Model

Quasi-1-dimensional Random $S = 1/2$ Heisenberg model with bond alternation

$$H = \sum_j \left\{ \sum_{i=1}^{N/2} J_S S_{2i-1,j} S_{2i,j} + \sum_{i=1}^{N/2} J_{ij} S_{2i,j} S_{2i+1,j} \right\}$$

intrachain

$$+ \sum_{i=1}^{N} \sum_{<j,j'>} J_{\text{int}} S_{i,j} S_{i,j'} \quad \text{interchain}$$

- Intrachain Interaction:

 $$J = 1 \quad J_{i,j} = \begin{cases} J_S & \text{probability } p \\ J_W & \text{probability } 1 - p \end{cases}$$

 $$J_S > J > J_W > 0$$

Method DMRG: Keeping 60 \sim 160 states.
[Bond Configuration]

\(p=1 \) \hspace{1cm} \cdots \hspace{0.5cm} \bullet \hspace{0.5cm} \cdots \\

\hspace{0.5cm} J_S \hspace{0.5cm} J \\

\(p=0 \) \hspace{1cm} \cdots \hspace{0.5cm} \bullet \hspace{0.5cm} \cdots \\

\hspace{0.5cm} J_W \hspace{0.5cm} J \\

\(0 < p < 1 \) \hspace{1cm} \cdots \hspace{0.5cm} \bullet \hspace{0.5cm} \cdots \\

\hspace{0.5cm} J \hspace{1cm} J_W \hspace{0.5cm} J \hspace{1cm} J_S \hspace{0.5cm} J \hspace{1cm} J_S \hspace{0.5cm} J \hspace{1cm} J_S \hspace{0.5cm} J \hspace{1cm} \cdots J \hspace{1cm} J_S \hspace{1cm} J \hspace{1cm} J_W \hspace{0.5cm} J
3 Magnetization Curve of an Isolated Chain at $T = 0$.

$J_S = 2 \quad J_W = 0.1 \quad J = 1$

1. Uniform Chain - DMRG
Averaged over 64 samples with $N = 120$.

almost free spins
4 Effect of Interchain Interaction

Mean Field Approximation for the Interchain Interaction

\[\langle S^x_{i,j} \rangle = \begin{cases}
(−1)^i m & J_{\text{int}} < 0 \quad \text{Interchain ferromagnetic interaction} \\
(−1)^i P_j m & J_{\text{int}} > 0 \quad \text{Interchain antiferromagnetic interaction}
\end{cases} \]

for \(J_{\text{int}} > 0 \)

\[P_j = +1 \quad j \in \text{A-sublattice} \]

\[P_j = -1 \quad j \in \text{B-sublattice} \]

Interchain mean field Hamiltonian

\[
H^{\text{IMF}} = \sum_{i=1}^{N} J S_{2i-1} S_{2i} + \sum_{i=1}^{N} J_i S_{2i} S_{2i+1} - H_{\text{st}} \sum_{i=1}^{N} (-1)^i S^x_i
\]
\[H_{st} = \lambda m(H_{st}) \quad \text{Self-consistent equation} \quad \lambda \equiv \frac{z}{|J_{int}|} \]

\[\lambda_c = \lim_{H_{st} \to 0} \frac{H_{st}/m(H_{st})}{H_{st}} \]

\(\lambda_c \): critical interchain interaction \(\lambda \)

Multiple reentrant transition

\[p = 0.2 \quad H_{st} = 0.0005 \quad p = 0.8 \]

\(N = 120 \). Averaged over 512 samples.
• Fine peak structure

\[\lambda_c(H_{st}) \]

\[H_{st}=0.0001 \quad H_{st}=0.002 \]

\[N = 240, 480 \] Averaged over 256 samples (middle 240 sites).

\[\lambda_c = 0 \] only for discrete points?

• \(H_c \)-dependence of \(\lambda_c \)

\[10^{-1.5} \quad 10^{-2} \]

\[N=240 \quad 480 \]
5 Intrachain spin-spin correlation function

Averaged over 512 samples for $N = 240$

Exponential decay even for $\lambda_c = 0$

Non plateau state: Dense excited states near the ground state

Staggered mean field mixes the excited state into the ground state

⇓

Divergence of χ_{st}

⇓

Long range order with weak interchain interaction
6 Summary

1. Quasi-one-dimensional random alternating bond $S = 1/2$ Heisenberg model exhibits multiple reentrant transitions in the magnetic field.

 Method: DMRG + Interchain mean field approximation

2. In the absence of interchain coupling, the spin-spin correlation function decays exponentially even in the non-plateau regime. Mix up the low energy excited states by interchain interaction.

 \Rightarrow Long range order

3. Bose glass phase (Nohadani et al) is not found

 Limitation of interchain mean field approximation

4. • Reentrant transition in 3-D random dimer system

 Random destruction of singlet dimer \Rightarrow **Local moment**

• Quasi-One-dimensional random alternating bond system

 Competition of 2 types of dimer patterns \Rightarrow **local moment**

 More complicated features = **Multiple reentrant transition**
5. Speculated finite temperature phase diagram

6. Possibility of experimental observation: random substitution of anions on the superexchange path