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® Concept of geometric frustration and examples.

® General thermodynamic properties of frustrated magnets.
®* Ground state degeneracy.

®* Energy barriers and order by disorder.

® Frustration in quantum magnets.

®* Quantum states: spin liquids and valence bond order.

®* Dimensional reduction and fractional excitations.

® Klein models, checkerboard lattice and quantum spin-ice.
® Electrodynamics of spinons.

® Perturbations away from the optimally frustrated point.

*Summary



Geometric Frustration

Geometric frustration arises when the spins casatiéfy all the interactions
simultaneously:
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Examples of frustrated lattices
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Ground State Degeneracy

Classical n.n. AF Heisenberg Hamiltonia| The minimum energy conditido=0
Imposes three constrairits= L, = L, for
H=1J Z S;:S; spins withn=3 components. The number
(3,5) of constrains iK=n. The number of
degrees of freedom excluding the globa
rotations is==q (n-1)-n. So, up to global

. rotations, the dimension of the ground
i IZ Si-5; = §L ’ state manifold i® = F-K=q(n-1)-2n.
() Note that fom=3, we getD=0 for the
where L — Zq: S. triangle =3) andD=2 for the tetrahedron
i (9=4).
@
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-R. Moessner, Can. J. Phys. 79, 1283 (2001).



Ground State Degeneracy

For a lattice built up of frustrated units the It turns out that the Kagome lattice also has

Hamiltonian can be written as: an extensivé® because of dependent
;N constraints.
) 0.3 T e
i 5 Z Li SrCrGa0;q . .."-..
a=1 - ..
wherea runs over alN units. If the lattice s o
consists of corner-sharing unitsgpépins S “CwT!
with n components we have: 5
Unfrustrated
F=N(n-1)q/2, K= Nng o
D=F-K=Nn(g—2) - q]/2
1.0F et ® * ..-oooJ
Here we have assumed that the constraints g ol
are independent. If=3, the dimension of Bl Dy,Ti;0
the ground state manifold becomes -l
extensive atj=4, i.e., the pyrochlore e ]
antiferromagnet has an extensive ground 2 o2r PRUING'S 106 SnropyY
state dimension. In general,becomes 0.0{; e e

eXtenSive fO N> 3 q> 4 Temperature (K)



Energy barriers and order by disorder

The topology of the ground state is another impomnaaperty. Is it possible to connect
two ground states continuously or there are enbaggiers separating them. When the
temperature becomes finite, the state of equilibnsithe one that minimizes the free
energy. Whereas the internal energy of every grataie is the same, the number of
accessible low energy states (entropy) may be mugitehifor one of them. In this
situation the system effectively spends all the tar@und this particular ground state.
In general, this is an ordered state and its seledi@nown arder by disorder
because it is stabilized by thermal fluctuations.
AN 3
Phase diqgram for ncor_npone_nt spins 4 B s, n y ._ET_“U'H' states
arranged in corner-sharing units of q. iy
Ordered states, provided they exist,
are selected fors¢t and 3 with the x

exception of g=4 and n=3 which is 3
marginal. .

phase space
2 || A8
; q

R. Moessner et. al., Phys. Rev. L&), 2929 e
(1998). 3 4 5 6




Quantum ‘Frustration

Quantum fluctuations can also stabilize an ordstaté out of the mechanism of
order by disorder. In some cases, this ordered Istet@0 classical analog. Let us
consider the following simple example of a spin HiElsenberg model on a chain
with nearest and next-nearest neighbor interactions

J, J, 2 7, J,
\J/ Nl a\]/\‘]l
ForJ,=2J,, this Hamiltonian can be expressed as:

HMG:JQZL?E :‘IQXPL&:3X2+C with Lo = S +Sa2+sc}:33

wherea denotes a triangular unit. The operaﬁELﬂ”:?’X2 projectspies of
the triangular plaquette onto theL., = 3/2 subspace. This model is known as
the Majumdar-Ghosh Hamiltonian.

-C. K. Majumdar and D. K. Ghosh, J. Math. Ph{s.1399 (1969).



Quantum ‘Frustration

Therefore a state containing one single per trilmgalaquette is a ground state.
There are only two possible ground states:

This ordered quantum state breaks spontaneouslk, thyanmetry ofH,,; and it is

know asvalence bond solidr crystal. The elementary low energy excitatioms a
deconfinedspinong(S=1/2 excitations) that carry a topological defedtedsolitort

Soliton

Anti-Soliton



Confinement of fractional excitations in higher D

Valence bond crystal ground state of a 2D Hamiltorfizroken Z symmetry):
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Confinement in 29D
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Quantum Frustration in 29D

Klein generalized this idea to other lattices (DKl&in, J. Phys. A: Math. Ged5, 661
(1982). Let’s consider the following case for the
sguare lattice:

H=J Z S;-S;+ Jy Z S;-S; + KZ(ngPkl + Py Pji, + P Pji1)
(,7) ({4,5)) o

3J B
ForJ.,=J,/2 andK= J,/8 we obtain: Hpg = 71 Z PSa=2
(87

C. D. Batista and S. A. Trugman, Phys. Rev. 1%31.217202 (2004).



Massive ground state degeneracy
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Dimensional Reduction

Local Z, order parameter on each diagonal zig-zag chain:

H =
— .-
< all
e

There_ Is no effectivel __| )
coupling between orfer
parameters on differEnt|— | e =
chains!

= D o 2%

- — —»l WhereL is a linear
dimension of the
o —— -

i system.
- D S
| _
The dimensionality is spontaneously reduced in tiedoergy sector df, !
-C. D. Batista and Z. Nussinov, Phys. Reww2B 045137 (2004).




Deconfined fractional excitations in 29D
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Deconfined fractional excitations in 29D
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Perturbations

One dimensional behavior and
spinon excitations

v

QPT 9



Checkerboard Lattice

H=J )Y H3+K) (H}Hp+ HiHj, + HiHS),

(i5)

where H;, = 5;" - S . We can rewtitas:

H_J;Z§%+'f25‘é,
L []

ForK=K_= 4J/5, H becomes a Klein Hamiltonian:

12 Sres
Hyi = - JZD:P 1

Z. Nussinov, C. D. Batista, B. Normand and S. A.giman, cond-mat/0602528.






Six Vertex Representation

XXX K X X

Vertex Ice rule leads to

Representation KX X X X X six zero-divergence
configurations
Line
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The six vertex model is exactly solvable!
[R. J. BaxterExactly Solved Models

in Satistical Mechanics, (Academic
Press, London, 1982).]

We will assume that the dimer
coverings, although non-orthogonal,
they are linearly independent.
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Deconfined Spinon Excitations




Entropy Driven Critical Correlations

Repr;/set;tnet)z:ltionl >< >< >< >< >< ><

® g sublattice of duak The local zero

e 3 Sublattice of duat  divergence condition
can now be written as:

We denote the sites of the dual
lattice £” by r and the link

between the sitesandr+e, by

the pairr, L whereeg, is a e Z; 57 =0
primitive vector of.?. We N _
; L G2 Then, the operators:
introduce the quantity’r ,, ¢ [ _ .

. . . Z/{ = G(Mpa E-ﬁGa S'&
the links of the dual lattice (s e
of the original latticer). The 12—£1/ are the local U(1)
charge is+1/2if the arrow flow ey symmetry
from 4 to 3 and-1/2if the arro transformations of the
flows from s to 1.. theory under

consideration.

L. B. loffe and A. Larkin, Phys. Rev. 80, 6941 (1989); D. A. Huset al, Phys. Rev. Let91, 167004 (2003).



Entropy Driven Critical Correlations

We introduce now an The last equation is the
oriented angular momentu N Gauss law of
variable on the links of” : - electrodynamics in absence
of external charges:
1
[,(r) :JI‘(S;MJF? V:E=0
Then, we can identify the
whereg, =1(-1)if r [/a (). variable with an electric
By introducing the lattice field E (r).
radient: ; . . :
J Vertex configurations that violate the ice
Vil (r)=1,(r)=1,(r—e,) rule should then carry a charge:
We can rewrite the ice-rules as an expljcit
zero divergence condition on the vecto} Q= Z Vulu(r)
field [,(r) : pu=1,2

Y Vulu(r) =0.

pu=1,2




Entropy Driven Critical Correlations

The introduction of spinons

We now conjecture that th el d defect
long range fluctuations of (r_ncl)ntomtehrs)l an | crects
coarse grained field is [ \d”'o ates e foca tzgrct) Th
governed by the probabilit Vergence constraint. The
distribution: corresponding charge is

K [ g2 given by the divergence of

p(E) x e~z Jv E:

Configurations that locally Q = Z V,l,(r)
minimize the (coarse

=1,2
grained) field strength g

maximize the number of flippable
plaquettes. The last equation implies thqt & = —2 >< E
the gauge field is in a Coulomb phase. I{is

now straightforward to deduce the long
distance correlator: Q=1

X X X
(B, (0)E, (r)) = — Lur = 37uTy] R ¥ X

4T K rd




Entropic Coulomb Interaction Between Spinons

The spinon-spinon interaction
Is determined by the change in
the total entropy as a function
of the distance between two
monomers inserted in the
lattice. The critical dipolar
fluctuations of the underlying

dimer field produce an

effective Coulomb interaction
which arises from the local

conservation law of zero
divergence:

~

V(r) =v¢°In " for — > 1
a a



Plasma of Spinons




Perturbations and Dimer Models

This Rokhsar-Kivelson (RK) term is the minimal presé¢hat connects two
different dimer coverings. The low energy theoryha presence of a
perturbation that moves the system away from tlenpoint is a dimer model
on anon-orthogonaélimer basis.



Perturbations and Dimer Models

The RK process cancels out exactly for the mostrabperturbationk zK =

4J/5. In thiscase, the next minimal processes that contribuidsanon-zero
matrix element are:




Thermally Driven Deconfinement

Dilute plasma
of spinons

|

VBC | VBC Il

Kc K
ClassicalT=0 Critical Point



Summary

-Strongly frustrated systems have a very high low taperature entropy. There is an optimally
frustrated case for which this entropy is accumulatd at T=0, i.e., the ground state becomes massively
degenerated.

- In this situations, thermal and quantum fluctuations play a fundamental role in determining the low
energy physics of the system under consideration.

- Thermal fluctuations can select an ordered state dwf the mechanism of “order by disorder”.

- Quantum fluctuations can even select a “ quantum” odered state with no classical analog like the
valence bond crystal

- The massive ground state degeneracy can also app@aquantum systems even when the quantum
fluctuations are fully incorporated. These situations can lead to extremely interestingw energy
phenomena like: dimensional reduction, fractional gcitations in higher dimensions, an emergent
electrodynamics for spinons and defects.

- Perturbations away from the optimally frustrated point are usually relevant for stabilizing some
particular ordering at T=0.



