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G eom etric F rustration
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Geometrical
frustration

Frustration induced
by disorder

Geometric frustration arises when the spins cannot satisfy all the interactions
simultaneously:



E xam ples of frustrated lattices
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G eneral Susceptibility



G round State D egeneracy

Classical n.n. AF Heisenberg Hamiltonian:

Forq mutually interacting spins:

where                     .

The minimum energy condition L=0
imposes three constraints Lx= Ly = Lz for 
spins with n=3 components. The number 
of constrains is K=n.  The number of 
degrees of freedom excluding the global 
rotations is F=q (n-1)-n. So, up to global 
rotations, the dimension of the ground 
state manifold is D = F-K=q(n-1)-2n. 
Note that forn=3, we get D=0 for the 
triangle (q=3) and D=2 for the tetrahedron 
(q=4).

q=2 q=3 q=4

θ

φ

-R. Moessner, Can. J. Phys. 79, 1283 (2001).



G round State D egeneracy

For a lattice built up of frustrated units the 
Hamiltonian can be written as:

where α runs over all N units. If the lattice 
consists of  corner-sharing units of q spins 
with n components we have:

Here we have assumed that the constraints 
are independent. If n=3, the dimension of 
the ground state manifold becomes 
extensive at q=4, i.e., the pyrochlore 
antiferromagnet has an extensive ground 
state dimension. In general, D becomes 
extensive for n>3 q>4.

It turns out that the Kagome lattice also has 
an extensive D because of dependent 
constraints.



E nergy barriers and order by disorder

The topology of the ground state is another important property. Is it possible to connect 
two ground states continuously or there are energy barriers separating them. When the 
temperature becomes finite, the state of equilibrium is the one that minimizes the free 
energy. Whereas the internal energy of every ground state is the same, the number of 
accessible low energy states (entropy) may be much higher for one of them. In this 
situation the system effectively spends all the time around this particular ground state. 
In general, this is an ordered state and its selection is known as order by disorder
because it is stabilized by thermal fluctuations.

Phase diagram for n component spins 
arranged in corner-sharing units of q.
Ordered states, provided they exist, 
are selected for q≤4 and n≤3 with the 
exception of q=4 and n=3 which is 
marginal.

R. Moessner et. al., Phys. Rev. Lett. 80, 2929 
(1998).



Q uantum  F rustration

J1 J1 J1 J1

J2 J2J2 J2

J2 J2J2 J2

For J1=2J2, this Hamiltonian can be expressed as:

Quantum fluctuations can also stabilize an ordered state out of the mechanism of 
order by disorder. In some cases, this ordered statehas no classical analog. Let us 
consider the following simple example of a spin 1/2 Heisenberg model on a chain 
with nearest and next-nearest neighbor interactions.

where α denotes a triangular unit. The operator projects the spins of 
the triangular plaquette α onto the    subspace. This model is known as 
the Majumdar-Ghosh Hamiltonian.
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α

-C. K. Majumdar and D. K. Ghosh, J. Math. Phys.10, 1399 (1969).



Q uantum  F rustration

This ordered quantum state breaks spontaneously the Z2 symmetry of HMG and it is 
know as valence bond solidor crystal. The elementary low energy excitations are
deconfined spinons(S=1/2 excitations) that carry a topological defect called soliton:

Therefore a state containing one single per triangular plaquette is a ground state. 
There are only two possible ground states:

Soliton

Anti-Soliton



Confinem ent of fractional excitations in  higher D

Valence bond crystal ground state of a 2D Hamiltonian (broken Z4 symmetry):



Confinem ent in 2D



Q uantum  F rustration in  2D

Klein generalized this idea to other lattices (D. J. Klein, J. Phys. A: Math. Gen. 15, 661 
(1982). Let’s consider the following case for the
square lattice:

J1 J2

α

For J2=J1/2 and K= J1/8 we obtain:  

C. D. Batista and S. A. Trugman, Phys. Rev. Lett.93, 217202 (2004).



M assive ground state degeneracy

WhereL is a linear
dimension of the
system.



D im ensional R eduction

WhereL is a linear
dimension of the
system.

Local Z2 order parameter on each diagonal zig-zag chain:

There is no effective 
coupling between order 
parameters on different 
chains!

The dimensionality is spontaneously reduced in the low energy sector of HK !
-C. D. Batista and Z. Nussinov, Phys. Rev. B 72, 045137 (2004).



D econfined fractional excitations in  2D



D econfined fractional excitations in  2D



Perturbations

g

T

QPT

One dimensional behavior and
spinon excitations



Checkerboard L attice

αwhere                              . We can rewrite H as:

For K=Kc= 4J/5 , H becomes a Klein Hamiltonian:

Z. Nussinov, C. D. Batista, B. Normand and S. A. Trugman, cond-mat/0602528.





Six V ertex R epresentation

Vertex
Representation�

Line ����Representation

Ice rule leads to
six zero-divergence

configurations

The six vertex model is exactly solvable!
[R. J. Baxter, Exactly Solved Models
in Statistical Mechanics, (Academic
Press, London, 1982).]

We will assume that the dimer 
coverings, although non-orthogonal, 
they are linearly independent.



D econfined Spinon E xcitations

�



Vertex
Representation�

A  sublattice of dualL

B  sublattice of dual L
We denote the sites of the dual 
lattice L D by r and the link 
between the sites r and r+eµµµµ by 
the pair r,µ where eµµµµ is a 
primitive vector of L D . We 
introduce the quantity    on 
the links of the dual lattice (sites 
of the original lattice L). The
charge is +1/2 if the arrow flows 
from A to B and -1/2 if the arrow 
flows from B  to A ..

The local zero 
divergence condition 
can now be written as:

Then, the operators:

are the local U(1) 
symmetry 
transformations of the
theory under 
consideration.

-1/21/2

r

e1

e2

-1/21/2

L. B. Ioffe and A. Larkin, Phys. Rev. B 40, 6941 (1989); D. A. Huse et al, Phys. Rev. Lett. 91, 167004 (2003).

E ntropy D riven Critical Correlations



E ntropy D riven Critical Correlations

r

e1

e2

We introduce now an 
oriented angular momentum 
variable on the links of L D :

whereσr=1(-1) if r ∈∈∈∈ A (B ). 

By introducing the lattice 
gradient:

We can rewrite the ice-rules as an explicit 
zero divergence condition on the vector 
field       : 

The last equation is the 
Gauss law of 
electrodynamics in absence 
of external charges:

Then, we can identify the
variable with an electric 
field Eµ(r ).

Vertex configurations that violate the ice 
rule should then carry a charge:



E ntropy D riven Critical Correlations

r
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We now conjecture that the 
long range fluctuations of the 
coarse grained field E is 
governed by the probability 
distribution:

.

Configurations that locally 
minimize the (coarse 
grained) field strength

The introduction of spinons 
(monomers) and defects 
violates the local zero 
divergence constraint. The
corresponding charge is 
given by the divergence of 
E:

maximize the number of flippable 
plaquettes. The last equation implies that 
the gauge field is in a Coulomb phase. It is 
now straightforward to deduce the long 
distance correlator:



E ntropic Coulom b Interaction  B etw een Spinons 

The spinon-spinon interaction
is determined by the change in 
the total entropy as a function 
of the distance between two 
monomers inserted in the 
lattice. The critical dipolar 
fluctuations of the underlying 
dimer field produce an 
effective Coulomb interaction 
which arises from the local 
conservation law of zero 
divergence:



Plasm a of Spinons

�

Q=-2

Q= 1

Q= 1



Perturbations and D im er M odels

This Rokhsar-Kivelson (RK) term is the minimal process that connects two 
different dimer coverings. The low energy theory in the presence of a 
perturbation that moves the system away from the Klein point is a dimer model 
on a non-orthogonaldimer basis. 



Perturbations and D im er M odels

The RK process cancels out exactly for the most natural perturbation: K≠Kc= 
4J/5. In thiscase, the next minimal processes that contributes with a non-zero 
matrix element are:



Therm ally D riven D econfinem ent

VBC I VBC II

Dilute plasma
of spinons

KKc

T

ClassicalT=0 Critical Point



Sum m ary

-Strongly frustrated systems have a very high low temperature entropy. There is an optimally 
frustrated case for which this entropy is accumulated at T=0, i.e., the ground state becomes massively 
degenerated.

- In this situations, thermal and quantum fluctuations play a fundamental role in determining the low 
energy physics of the system under consideration. 

- Thermal fluctuations can select an ordered state out of the mechanism of “order by disorder”.

- Quantum fluctuations can even select a “ quantum” ordered state with no classical analog like the 
valence bond crystal.

- The massive ground state degeneracy can also appear in quantum systems even when the quantum 
fluctuations are fully incorporated. These situations can lead to extremely interesting low energy 
phenomena like: dimensional reduction, fractional excitations in higher dimensions, an emergent 
electrodynamics for spinons and defects.

- Perturbations away from the optimally frustrated point are usually relevant for stabilizing some 
particular ordering at T=0.


