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� transfer matrix in 2D classical system 
� variational principle& matrix product
� connection to 1D quantum systems
�White’s DMRG
� Is DMRG a renormalization group?
�Wilson’s like NRG



DMRG prehistory

1992 White’s DMRG

1968 Wilson’s RG

1971 Wilson’s NRG            

1941 Kramers-Wannier Approx.

1968 Baxter’s variational Approx

matrix product eigenvector
corner transfer matrix

Kondo problem

1987 VBS state/AKLT model

matrix product state



Transfer matrix
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1D quantum and 2D classical

Trotter formula — path integral(summation) representation---
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Kramers-Wannier Approx.

Eigenvector of the transfer matrix can be approximated 
by the Ising model itself in an  effective magnetic field.
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: effective couplings maximizing  

eigenvector can be represented as a product of scalar function

ΨΨΨΨ=Λ T

The result is much better than the well-known mean field approx,
Bethe approx, etc…



Baxter’s idea---matrix product form of the eigenvector---

0lim Ψ=Ψ ∞→
N

N T Max eigenvalue-eigenvector

0ΨNT

∑ +
= +

∏=Ψ
}{

1,
1

),(
1

µ
µµ ii

N

i
ssF

ii

),( 1, 1 ++
= ii ssF

ii µµ

is

1+is 1+iµ

iµ

block spin variables µµµµ

is
1+is

1−is

2+is

He write the eigenvector
as a matrix product form.
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Corner transfer matrix ---variational approx. again---
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We can regard FWFas a renormalized transfer matrix
and use the variational approximation  for again.

∑=Ψ

ΨΛ=Ψ

≡

',
,,'',' )(),'()'(

~

~~~~

~

νν
µννννµ sAssGsA

T

FWFT

A AG

FFT
~

Ψ~

A : corner transfer matrix(CTM)

W

T
~

µµ’

ν’ ν

s’ s

T
~

ΨΨΨΨ=Λ ~~
/

~~~~
T



Reduced density matrix

The previous “renormalized transfer matrix” is very similar
to the block Hamiltonian in DMRG.

42
DMRG A≈Ψ≈ρ

The connection in the eigenvector level

2A≈Ψ half infinite plane

A

whole 2D plane with 
a half infinite cut

quadrant

4TrATrZ DMRG == ρ



Iterative method
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λ： eigenvalues of CTM in decreasing order

Keeping larger λ gives a good approximation of
the partition function.

extend size of CTM      diagonalize CTM 
keep the larger eigenvalue eigenstates of CTM

role of the renormalized transfer matrix is rather auxiliary.

prepare initial matrices

keeping larger λ, variational principle

result is very good and convergence is rapid



2D classical v.s.1D quantum 

2D classical

We can treat the two spatial dimension equivalently.

1D quantum

This is a kind of anisotropic limit  of 2D classical case
Zero temperature & infinite trotter number limit 
in Suzuki-Trotter transformation 

This is of great benefit in thinking in the 2D world

if  the zero temp & Trotter limits is properly taken.
the eigenvector of the transfer matrix in the mapped system
becomes the groundstate wavefunction of the original system. 



How to approach 1D quantum systems?

We need some break through!

1. Boltzmann weight becomes singular as T ->0 !
2. We are not able to know the MP form of the groundstate

wavefunction without the transfer matrix.
3. Timing!    computer resources those days is insufficient for 

the transfer matrix computation.

In principle, it would be possible to formulate a numerical 
algorithm to solve the 1D quantum system, based on the 
transfer matrix/corner transfer matrix approach.

But, the history did not go so.  Why?



White’s DMRG 

Hamiltonian formulation

RL ΨΨ=Ψ ω
2. maximize the norm of the wavefunction within the kept number of basis

reduced density matrix

LH RH

1.The wavefunction is obtained by the  direct diagonalization of super block
Hamiltonian(full Hamiltonain including both left and right block)

singular value decomposition

lanczos diagonalization

3. renormalization is performed for left/right block Hamiltonian



How did he get such an idea?

This question is just out of curiosity(^_^)

The answer is partly described by himself in  “Density-matrix
renormalization group”, eds. by Peschel etal, springer(1999)

NRG: particle in a box(Wilson’s approach)
QMC:  for fermion(path integral)
Exact diagonalization
QMC: negative sign(block variables)
QMC: zero temp.
NRG: in momentum space
NRG: Wilson’s perturbative approach
NRG: boundary condition

He got the idea of “projection of super block into a block”
after a lot of trials and failures.



Can I get such an idea?

This question is just for fun(^_^),  because DMRG had already been 
presented when I started my research in the graduate school.

I would have never gotten the idea that I diagonalize the 
superblock to obtain the groundstate wavefunction.

In 2D classical lattice statistics, we can construct
the eigenvector directly by using CTMs

I started my research from the variational principle of 
the MP state and CTM.

I would try to a method which can directly manipulate 
the wavefunction in the 1D quantum case



Matrix product & DMRG 

In the bulk limit, the matrix in MP state should be uniform.
For a finite size system,  MP is position dependent.

Ostlund and Rommer reconstructed the wavefunction of
DMRG, by analyzing the iteration process in DMRG.

In contrast to 2D classical case, we can not decompose
the wavefunction into a MP state directly.
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A[s] : projection(transformation) matrix in DMRG



finite system size method 

finite system size method of DMRG is more useful.

In the context of statistical mechanics,
infinite system size DMRG is more interesting.

Various improvements and applications of DMRG
are based on the finite system size method, which 
were included in Prof. Jackelmann’s talk

•site resolved information: spin profile
•excitation, time evolution, etc..

But, here…

we are now interested in critical phenomena in DMRG……



Is DMRG a renormalization group? 

What is a relevant/irrelevant operator in DMRG? 

questions

•How does DMRG behave in the critical limit?

Can we extract a critical index through DMRG?

•What is the energy/length scale in DMRG?

•What is the meaning of eigenvalue spectrum of  the  
reduced density matrix at critical point?

Comparison to Wilson’s real space renormalization group

Wilson NRG for Kondo problem is only the method which 
can deal with critical properties of the 1D quantum system.



block spin transformation RG 

trace out

rescale

The reason for the failure of this procedure was 
analyzed by White

The “boundary” of the block spin is important.



Wilson’s NRG 

Kondo impurity problem

Add free electrons and project out the higher energy states
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Λ(>1) is a cut off parameter, which controls the energy
scale of the system.

1D quantum system 
with the boundary

Λ itself comes from log-discretization
of fermi sea



Testing Wilson-like NRG 
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Cutoff Λ 1=Λ
We do not touch the energy 
scale of the system

cf. T. Xiang,(1991) PRB (almost the same timing as DMRG!)

free boundary conditionboundary



Results[excitation gap] 

S=1 HeisenbergS=1/2 Heisenberg/XY

gapless; 1/N dependence

Haldane gap

n=5

m=1600 m=800

n=1
4 fold degenerating ground state 
due to edge spins

The ground state energy is consistent with the known value



The results are qualitatively reasonable, but the accuracy 
of DMRG is much better.

To improve the accuracy of NRG  may be difficult. 

The role of cutoff is significant in Wilson’s NRG!         

The spectrum of Wilson-like NRG with Λ=1 looks like the 
finite size scaling (S=1/2 critical case)

The meaning of the density-matrix-based transformation
in DMRG should be discussed again. 

some implications



Wilson and White 

reduced density matrix/larger eigenvalues
angular quantization in 2D space-time

Hamiltonian/lower energy 

add the center sites

add the boundary site
(the other side of the impurity)

Wh

Wi

cutoff parameter controlling the energy scale



conclusion at this stage

In order to see critical phenomena, a cutoff parameter 
controlling the energy scale should be implemented in DMRG

Although the block spin transformation is used in DMRG,
the theory has no explicit scale transformation.

Renormalization group see a response of the system
when changing cutoff paramer(energy scale/length scale)

In terms of  “renormalization group”, the theory should
have an actively controllable cutoff parameter.

(not only real space approaches 
but also field theoretical renormalization group

Is DMRG a renormalization group? =>  No?



please see symposium

Is there any possible approach to transform DMRG 
into a Wilson-like NRG? 

corner Hamiltonian approach

CTMaHe−∝ρ

partially YES!

corner Hamiltonian



Quantum information 



Entanglement entropy 
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