Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP

Fermion Simulations

July 31, 2006

Univ. Tokyo M. Imada

ISSP, Kashiwa

collaboration

T. Kashima, Y. Noda, H. Morita, T. Mizusaki, S. Watanabe I.V. Solovyev Y. Imai Y. Otsuka

Numerical Methods for Lattice Fermions

exact diagonalization high-temperature expansion DMRG variational Monte Carlo cellular (cluster) DMFT quantum Monte Carlo auxiliary field world line PIRG Gaussian basis

small clusters high to moderate *T* 1D systems trial wave functions small cluster + DMF negative sign

PIRG: nonperturbative but systematic approach from U=0the only available approach for frustrated models, complex systems with orbital at T=0 for large/size/

Path-Integral Representation

$$|\Phi\rangle = \lim_{p \to \infty} [\exp[-\Delta_{\beta} H]]^{p} |\Phi_{0}\rangle$$
$$|\Phi'\rangle = \exp[-\Delta_{\beta} H] |\Phi\rangle$$

Practically, taking small Δ_{β} , but $\Delta_{\beta} p$ large

 $\approx \exp[-\Delta_{\beta} \boldsymbol{H}_{0}/2] \exp[-\Delta_{\beta} \boldsymbol{H}_{1}] \exp[-\Delta_{\beta} \boldsymbol{H}_{0}/2] |\Phi\rangle + \boldsymbol{O}(\Delta_{\beta}^{3})$

Hubbard model

$$H = H_0 + H_1$$

$$H_0 = \sum_{ij\sigma} t_{ij} c^{\dagger}{}_{i\sigma} c_{j\sigma} + \text{H.c}$$

$$H_1 = U \Sigma n_i n_i$$

Matrix representation of Slater determinant

$$M \text{ Fermions on } N \text{-sites lattice} \qquad M \\ |\Phi_{\sigma}\rangle = \prod_{m=1}^{M} (\sum_{i=1}^{N} (\Phi_{\sigma})_{im} c_{i\sigma}^{\dagger}) |0\rangle \\ \text{inner product} \qquad N \\ \langle \Phi_{\sigma} | \Phi_{\sigma}' \rangle = \det({}^{t} \Phi_{\sigma} \Phi_{\sigma}') \\ \text{Example; plane wave state} \\ \sum_{i=1}^{N} \cos(\mathbf{k}_{n} \cdot \mathbf{r}_{i}) c_{i}^{\dagger} |0\rangle \qquad \Phi_{i,2n-1} = \cos(\mathbf{k}_{n} \cdot \mathbf{r}_{i}), \\ \Phi_{i,2n} = \sin(\mathbf{k}_{n} \cdot \mathbf{r}_{i}) c_{i}^{\dagger} |0\rangle \\ \sum_{i=1}^{N} \sin(\mathbf{k}_{n} \cdot \mathbf{r}_{i}) c_{i}^{\dagger} |0\rangle \qquad M. IMADA$$

SDW Hartree-Fock State

$$\Phi_{\sigma i,2n-1} = \sqrt{\frac{1-d_{k_n}}{2}} \cos(\mathbf{k}_n \cdot \mathbf{r}_i)$$

$$\pm \sqrt{\frac{1-d_{k_n}}{2}} \cos((\mathbf{k}_n + \mathbf{k}_s) \cdot \mathbf{r}_i)$$

$$\Phi_{\sigma i,2n} = \sqrt{\frac{1-d_{k_n}}{2}} \sin(\mathbf{k}_n \cdot \mathbf{r}_i)$$

$$\pm \sqrt{\frac{1-d_{k_n}}{2}} \sin((\mathbf{k}_n + \mathbf{k}_s) \cdot \mathbf{r}_i),$$

$$d_k = \frac{E_k}{\sqrt{\Delta_s^2 + E_k^2}}$$

IVI, INTADA

Operation of Kinetic Energy Projection

 $|\Phi'\rangle = \exp[-\Delta_{\beta}H_0]|\Phi\rangle$ bilinear tight-binding form $H_0 = \Sigma \left[t_{ii} c^{\dagger}{}_{i\sigma} c_{i\sigma} + \text{H.c} + \delta_{ii} \mu c^{\dagger}{}_{i\sigma} c_{i\sigma} \right]$ In Slater determinant **Matrix representation** representation, exponential of $\exp[-\Delta_{\beta}H_{0}] \Rightarrow b_{0}$ of kinetic energy generates another Slater detereminants $b_0 = \exp[-K]$ $K_{ij} = \begin{cases} -\Delta_{\beta}t & \text{if } (i,j) \text{ is the nearest neighbor} \\ = 0 & \text{otherwise} \end{cases}$ NM $N \left((e^{- au K})_{ij} \right) \left(\Phi \right)$ $V = \int V =$

Operation of Coulomb Energy Projection

$$|\Phi'\rangle = \exp[-\Delta_{\beta}H_{1}]|\Phi\rangle$$
 ??

$$H_1 = U\Sigma c^{\dagger}_i \quad c_i \quad c^{\dagger}_i \quad c_i$$

Projection by the interaction term is transformed to a sum of two Slater determinants by Stratonovich-Hubbard transformation **Stratonovich-Hubbard Transformation**

Discrete transformation

Auxiliary Ising variable s

$$e^{-\alpha n_{\uparrow} n_{\downarrow}} = \frac{1}{2} \sum_{s=\pm 1} \exp[2as(n_{\uparrow} - n_{\downarrow}) - \frac{\alpha}{2}(n_{\uparrow} + n_{\downarrow})]$$

$$a = \operatorname{th}^{-1} \sqrt{\operatorname{th}(\frac{\alpha}{4})}$$
(1)

decomposition

$$n_{\uparrow}n_{\downarrow} \Longrightarrow n_{\uparrow} \times n_{\downarrow}$$

Stratonovich-Hubbard transformation

Stratonovich-Hubbard transformation

$$|\Phi'\rangle = \exp[-\Delta_{\beta}H_{1}]|\Phi\rangle = \sum_{s}|\Phi(s)\rangle$$

$$+$$

branching occurs

IVI. IIVIA DA

Basis Generation in Slater Determinant Representation

$$\left|\Phi\right\rangle = \lim_{p\to\infty} \left[\exp\left[-\tau H\right]\right]^{p} \left|\Phi_{0}\right\rangle$$

 $\exp[-\tau H] \approx \exp[-\tau H_{K}] \exp[-\tau H_{U}]$

In Slater determinant representation Kinetic energy

$$\left|\Phi'\right\rangle = \exp\left[-\tau H_{K}\right]\left|\Phi\right\rangle$$

Interaction energy

Stratonovich-Hubbard transformation $|\Phi'\rangle = \exp[-\tau H_U]|\Phi\rangle = \sum_s |\Phi(s)\rangle$; branching +

Ground State Algorithm by Auxiliary Fields of Path Integral

ground state

IVI, INTA DA

Matrix Elements in Canonical Ensemble

Trace out Fermion degrees of freedom
leaving auxiliary fields
$$b_0 = \exp[-\Delta_\beta H_K]$$

 $b_1 = \exp[-\Delta_\beta H_U(\{s\})]$
density matrix
 $\rho(\beta; \varphi) = \sum_{\{s\}} W_{\uparrow} W_{\downarrow},$
 $W_{\sigma} = \det({}^t \Phi_{\sigma} B_{\sigma 1} B_{\sigma 2} \cdots B_{\sigma p} \Phi_{\sigma})$

$$B_{\sigma l} = b_0 b_{1\sigma}(s_1(l), s_2(l), \cdots, s_N(l)) b_0$$

IVI, IIVIA DA

Path integral in grand canonical ensemble

valid at finite temperature

$$\beta = p\Delta_{\beta}$$

$$\operatorname{Tr}\rho(\beta;\varphi) = \sum_{\{s\}} W_{\uparrow}W_{\downarrow},$$
$$W_{\sigma} = \det(I + B_{\sigma 1}B_{\sigma 2}\cdots B_{\sigma p})$$

$$B_{\sigma l} = b_0 b_{1\sigma}(s_1(l), s_2(l), \cdots, s_N(l)) b_0$$

$$e^{-\Delta_{\beta}H_l(\tau_l)} = B_l$$

IVI, INTA DA

Full summation over path integral

$$B = e^{\Delta_{\beta}H_{K}/2}e^{-\Delta_{\beta}H_{U}^{(\{s\})}}e^{-\Delta_{\beta}H_{K}/2}$$
$$\rho = \sum_{\{s\}}\prod_{l=1}^{p}B(\tau_{l})$$

summation over all {*s*}

IVI, IIVIA DA

Numerical Algorithms

Summation over all the Stratonovich-Auxiliary variable

requires 2^{Np} terms summations

Monte Carlo sampling puantum Monte Carlo

Renormalization (projection and truncation) of generated basis

path-integral renormalization group

IVI. IIVIA DA

Anticommuting Fermions

$$W(A) = \langle i | e^{-\tau H} | j \rangle \langle j | e^{-\tau H} | k \rangle$$
$$\langle k | e^{-\tau H} \dots A \dots | i \rangle$$
$$W(1) < 0$$

Average sign decreases exponentially with increasing N, β

$$\langle A \rangle = \frac{\sum_{s} W_{s}(A)}{\sum_{s} W_{s}(1)} \approx \frac{0}{0}$$

Large statistical error

Difficulty in QMC

IVI, INADA

Path-Integral Renormalization Group (PIRG)

Kashima et al. JPSJ 69 (2000)2723; 70(2001)2287

IVI, INTA DA

Numerical Framework of PIRG

Kashima et al. JPSJ 69 (2000)2723; 70(2001)2287

Optimize $|\Phi\rangle$ at fixed *L* $\left|\Phi\right\rangle = \sum_{i}^{L} c_{i} \left|\varphi_{i}\right\rangle$ **Increase** L **Extrapolation** $E = \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} \qquad \langle A \rangle = \frac{\langle \Phi | A | \Phi \rangle}{\langle \Phi | \Phi \rangle} \quad \text{variational}$ $\langle \varphi_i | A | \varphi_i \rangle, \langle \varphi_i | \varphi_j \rangle$ Easily computable

ex. Slater determinant

No negative-sign problem

IVI, IIVIA DAL

Basis Generation in Slater Determinant Representation

$$\left|\Phi\right\rangle = \lim_{p \to \infty} [\exp[-\tau H]]^p \left|\Phi_0\right\rangle$$
 path integral

 $\exp[-\tau H] \approx \exp[-\tau H_t] \exp[-\tau H_U]$

In Slater determinant representation Kinetic energy

$$\left|\Phi'\right\rangle = \exp[-\tau H_{t}]\left|\Phi\right\rangle$$

Interaction energy

Stratonovich-Hubbard transformation $|\Phi'\rangle = \exp[-\tau H_U]|\Phi\rangle = \sum_s |\Phi(s)\rangle$; branching +

nonorthogonal basis

IVI, INA DA

WF Renormalization in the direction to imaginary time

Comparison with Orthogonal Basis

Renormalization procedure

At a fixed dimension, *L* in restricted Hilbert space in some representation, find the "fixed point":

$$\left\langle \varphi_{i} \middle| \varphi_{j} \right\rangle$$
 and $\left\langle \varphi_{i} \middle| H \middle| \varphi_{j} \right\rangle$ "effective Hamiltonian"
rojection & $|\Phi\rangle = \sum_{i=1}^{L} c_{i} \middle| \varphi_{i} \right\rangle$ ground state of

projection & $|\Phi\rangle = \sum_{i} c_{i} |\varphi_{i}\rangle$ ground state of "effective Hamiltonian"

w.f. renormalization, hamiltonian matrix renormalization

Renormalization in energy; filtering out high energy mode

c.f. in usual RG, one finds a fixed point rep. in the scaled but essentially fixed rep.

Extrapolation to L

 $\Delta_{E} = \left(\left\langle E^{2} \right\rangle - \left\langle E \right\rangle^{2} \right) / \left\langle E \right\rangle^{2} : \text{Extrapolation with energy variance}$ $\langle \boldsymbol{E} \rangle - \boldsymbol{E}_0 \propto \Delta_{\boldsymbol{E}} : \boldsymbol{L}$ large Hubbard 6*2, 5+5, U=4, t=1 6x6 U/t=4 -15 PIRG -15.5 Exact Hartree-Fock+CI -1.84 -16 <E> VMC <H>// -16.5 -17 Energy -17.5 -1.85 -18 -1.82 100 120 140 20 60 80 0 40 S=0L S=1-1.84 S=0 -1.86 -1.86 0.01 n 0.005 0 Energy variance 171, ILYLAN JAN

Quantum number projection

variational ground states in the restricted Hilbert space do not necessarily preserve the original symmetries of *H How to restore the symmetries* ?

Quantum number projection operator $\mathcal{L} |\psi\rangle$, $\langle \psi | \mathcal{L} |\psi \rangle$, $\langle \psi | \hat{H} \mathcal{L} |\psi \rangle$, $\langle \psi | \hat{O} \mathcal{L} |\psi \rangle$, $\mathcal{L}^2 = \mathcal{L}$

> Mizusaki and Imada PRB69, 125110 (2004)

> > IVI. IIVIA DA

Momentum Projection

$$\mathcal{L}^{\vec{k}} = \frac{1}{\mathcal{N}} \sum_{j} e^{i(\vec{K} - \vec{k})\vec{R}_{j}}$$

K; momentum operator $\frac{1}{N} \sum_{j} e^{i\vec{K}\vec{R}_{j}} |\phi(0)\rangle = |\phi(j)\rangle$

j spatial translation

$$\left\{ \begin{array}{c} N \\ H \\ O \end{array} \right\} = \frac{1}{\mathcal{N}} \sum_{j} e^{-i\vec{k}\vec{R}_{j}} \left\langle \phi \right| \left\{ \begin{array}{c} 1 \\ \hat{H} \\ \hat{O} \end{array} \right\} \left| \phi\left(j\right) \right\rangle$$

IVI, INTA DA

Spin rotationWigner's D function
$$L_{MK}^{S} \equiv \frac{2S+1}{8\pi^{2}} \int d\Omega D_{MK}^{S*}(\Omega) R(\Omega)$$

 $\Omega = (\alpha, \beta, \gamma)$ Euler angle $R(\Omega) = e^{i\alpha S_{z}} e^{i\beta S_{y}} e^{i\gamma S_{z}}$ $B_{MK}(\Omega) = \langle SM | R(\Omega) | SK \rangle = e^{i\alpha M} e^{i\gamma K} d_{MK}^{S}(\beta)$
 $d_{MK}^{S}(\beta) = \langle SM | e^{i\beta S_{y}} | SK \rangle.$ $L_{N_{0}M}^{S} L_{M'N_{0}}^{S} = L_{N_{0},N_{0}}^{S} \delta_{MM'}$ $N_{0} = S_{z}$

IVI, IIVIA DA

Spin projection

$$\mathcal{L}_{N_0N_0}^S \equiv \frac{2S+1}{2} \int_0^{\pi} d\beta \sin\beta d_{N_0N_0}^S(\beta) e^{i\beta S_y}.$$

$$\begin{cases} N \\ H \\ O \end{cases} = \frac{2S+1}{2} \int_0^{\pi} d\beta \sin\beta d_{N_0N_0}^S(\beta) \langle \phi' | \begin{cases} 1 \\ \hat{H} \\ \hat{O} \end{cases} | \phi(\beta) \rangle$$
$$|\phi(\beta)\rangle = e^{i\beta S_y} |\phi\rangle.$$

$$d_{0,0}^S(\beta) = P_S(\cos\beta)$$
 Legendre polynomial

IVI. IIVIA DA

Quantum-Number Projected PIRG (OP-PIRG)

Mizusaki and Imada

$$|\psi_g\rangle = \lim_{\tau \to \infty} e^{-\tau H} |\phi_{initial}\rangle$$
 PRB69, 125110 (2004)

$$\lim_{\tau \to \infty} e^{-\tau H} \mathcal{L} \left| \phi_{initial} \right\rangle$$

is replaced with $\lim_{\tau \to \infty} [\mathcal{L}e^{-\Delta \tau H_K} \prod_i \mathcal{L}e^{-\Delta \tau H_{Ui}}]^M |\phi_{initial}\rangle$

Yrast state;

lowest energy state with specified quantum number

1/1, 1/1/A DA

Quantum Number Projection + PIRG

Spin, Momentum, ... QMC -1.8574(14) QP-PIRG -1.85790(2)

PIRG+QP QP-PIRG

Excited States Energy Dispersion Yrast states

Excitation Spectra, Dispersion

IVI. IIVIA DA

Grand Canonical Ensemble

Watanabe, MI; JPSJ 73 (2004) 1251

 $H = H - \mu \hat{N}_{a}$ Particle-hole transformation $\begin{cases} c_{k\uparrow} \rightarrow c_{k} \\ c_{k\downarrow} \rightarrow d_{k}^{+} \end{cases}$ **Transformed Hamiltonian:** $H = H_t + H_U - \left(\frac{U}{\Delta} + \mu\right)N$ $H_t = -\sum_{\langle ij \rangle} t_{ij} \left(c_i^+ c_j + c_j^+ c_i \right) + \left(\frac{U}{2} - \mu \right) \sum_i c_i^+ c_i$ $+\sum_{\langle ij\rangle} t_{ij} \left(d_i^+ d_j + d_j^+ d_i \right) + \left(\frac{U}{2} + \mu \right) \sum_i d_i^+ d_i$ $H_U = -U\sum c_i^+ c_i d_i^+ d_i$ IVI. INTAL DAL

Extended basis

Total electron number

$$N_{e} = \sum_{i\sigma} \left\langle c_{i\sigma}^{+} c_{i\sigma} \right\rangle = N + \sum_{i} \left\langle c_{i}^{+} c_{i}^{-} - d_{i}^{+} d_{i} \right\rangle$$

$$N_{e} = \sum_{i\sigma} \left\langle c_{i\sigma}^{+} c_{i\sigma} \right\rangle = N + \sum_{i} \left\langle c_{i}^{+} c_{i}^{-} - d_{i}^{+} d_{i} \right\rangle$$

Several Applications

Hubbard Model

Phase Diagram of Mott Transition in the 2D Hubbard model; *T*=0

Mott transition in experiments

Nonmagnetic Mott insulator/phase

Nature of spin liquid phase: Spin-gapless phase

IVI, IIVIA DAL

k-dependence of gapless excitation

Very small dispersion (incoherent excitation)? or continuum of excitation (spinon Stoner excitation)?

Coherence

gapless excitation structure

spin renormalization factor $Z_{s} = |\langle S = 1, q | \sum_{k} c^{\dagger}_{\uparrow}(k+q)c_{\uparrow}(k) - c^{\dagger}_{\downarrow}(k+q)c_{\downarrow}(k) | S = 0, q = 0 \rangle|$ $= |\langle S = 1, q | \sum_{k} S^{+}(q) | S = 0, q = 0 \rangle|$ **particle-hole excitation**

no fractionalization

Zs/ N 0 for N

Exotic Spin Liquid at Registered Phase

X=Cu₂(CN)₃ $t'/t \sim 1.0$, (largest among ET family) $U/t \sim 8$

Shimizu, Maesato, Saito, Miyanaga, Kanoda (2003)

No signature of magnetic transition down to 0.03K

No long-ranged order Gapless excitations

IVI, IIVIA DA

Electronic Structure Calculation of Realistic Systems

Downfolded Hamiltonian

Imai, Solovyev,MI PRL, 95 (2005) 176405

 $H = \sum_{k} \varepsilon_{kn} c^{\dagger}_{kn} c_{kn} + \frac{1}{2} \sum_{k} c^{\dagger}_{kn} c_{kn'} U_{nn',mm'} (k,k') c^{\dagger}_{k'm} c_{k'm'}$ $2_{k,k',n,m,n',m'}$

solver; PIRG

xy=1, yz=2, zx=3

interaction

(1) intra-orbital Coulomb interaction:
U(1)=2.772451, U(2)=2.583078, U(3)=2.583069
(2) inter-orbital Coulomb interaction:
U'(1,2)=1.346084, U'(1,3)=1.346081,
U'(2,3)=1.279618
(3) exchange and pair hopping:
J(1,2)=0.654524, J(1,3)=0.654524, J(2,3)=0.639163

level -0.8468 -0.9288

degeneracy of yz,zx

hopping 1.000000 0.000000 0.000000 vector: -0.2184 0.0000 0.0000 0.0000 -0.0451 0.0000 0.0000 0.0000 -0.1940 1.000000 1.000000 0.000000 -0.0753 0.0000 0.0000 0.0000 0.0094 0.0029 0.0000 0.0029 0.0094 0.500000 0.500000 1.638780 0.0020 0.0056 0.0056 0.0056 -0.0157 -0.0089 0.0056 -0.0089 -0.0157 2.000000 0.000000 0.000000 -0.0035 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0175

Renormalization factor

 $Z = [1 - \partial \Sigma / \partial \omega]^{-1} \approx 0.8$ renormalization factors: $Z_{xy}=0.81 \qquad Z_{yz} \neq 0.80 \text{ (ADA)}$

IVI, INTA DA

Spin singlet ground state

PIRG result; $\lambda_c \sim 0.9$

Close to the MI transition

Imai, Solovyev,MI PRL, 95 (2005) 176405

IVI, INTA DA

Electronic Structure by Our Method I

Sr ₂ VO ₄	conduction	gap	magnetism
LDA	metal	0	para
Hartree-Fock	insulator	0.3eV	ferro
experiment	slightly insulating (close to transition)	~ 0-0.15eV	AF? not well known
DFT-PIRG	close to transition (slightly insulating)	~ 0-0.1eV	nontrivial AF, stripe orbital plaquette spin order
experimental test			

Electronic structure of YVO₃

Otsuka

IVI, INTADA

Electronic structure of YVO₃

gap ~ 0.7 eV

Otsuka

IVI, IIVIA DA

Summary

Algorithm of Auxiliary-Field Path Integral for Fermions

PIRG; quantum number projection

Applications Hubbard models; Mott transitions quantum spin liquids Realistic models; DFT+PIRG downfolding + low-energy solver

IVI, IIVIA DA

Convergence depends on lattice structure, interaction and system size

Local minimum

