第6回国際超強磁場科学+第58回極限コヒーレント光科学セミナー

日時: 2017年2月16日(金) 16時~17時

場所:物性研究所本館 6階 第一会議室

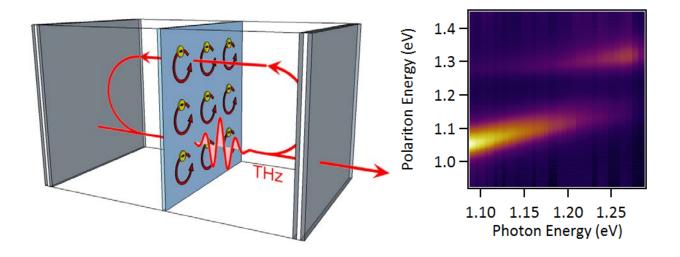
講師: Professor Junichiro Kono

(所属) (Departments of Electrical and Computer Engineering, Physics and Astronomy, and Materials Science and NanoEngineering, Rice University, Houston, Texas, U.S.A)

題目:

Cavity QED in the Ultrastrong Coupling Regime

Junichiro Kono


Departments of Electrical and Computer Engineering, Physics and Astronomy, and Materials Science and NanoEngineering, Rice University, Houston, Texas, U.S.A.

Strong resonant light-matter coupling in a cavity setting is an essential ingredient in fundamental cavity quantum electrodynamics (QED) studies as well as in cavity-QED-based quantum information processing. In particular, a variety of solid-state cavity QED systems have recently been examined, not only for the purpose of developing scalable quantum technologies, but also for exploring novel many-body effects inherent to condensed matter. This talk will first describe our recent observation of collective ultrastrong light-matter coupling in a 2D electron gas in a high-quality-factor terahertz cavity in a quantizing magnetic field, demonstrating a record-high cooperativity [1]. The electron cyclotron resonance peak exhibited splitting into the lower and upper polariton branches with a magnitude that is proportional to the square-root of the electron density, a hallmark of collective vacuum Rabi splitting. The second part of this talk will present 1D microcavity-exciton-polaritons in a thin film of aligned carbon nanotubes [2] embedded in a Fabry-Perot cavity, also exhibiting collective ultrastrong light-matter coupling. These experiments open up a variety of new possibilities to combine the traditional disciplines of many-body condensed matter physics and cavity-based quantum optics.

References

- 1. Q. Zhang et al., Nature Physics 12, 1005 (2016).
- 2. X. He et al., Nature Nanotechnology 11, 633 (2016).

関係所員 小濱 芳允 (内線 65337)

