Home >  研究会等 > Observation of excitonic instability in Ta2NiSe5

Observation of excitonic instability in Ta2NiSe5

日程 : 2020年8月6日(木) 10:30 - 12:00 場所 : https://sites.google.com/view/cevis2020/registration (We will send the zoom link to the registered participants) 講師 : Bumjoon Kim 所属 : Pohang University of Science and Technology (Postech), The Institute for Basic Science (IBS) 世話人 : 押川正毅 (63275)
e-mail: oshikawa@issp.u-tokyo.ac.jp

Excitonic insulator is an elusive phase of matter predicted many decades ago to occur in a narrow gap semiconductor or a semi-metal. Analogous to Cooper pairs in superconductors, Coulomb attractions bind electrons and holes in pairs to form charge-neutral excitons, which undergo a Bose-Einstein condensation at a sufficiently low temperature. However, unambiguous identification of an excitonic insulator remains challenging because candidate materials invariably display simultaneous structural phase transitions. In this talk, I will discuss the case of Ta2NiSe5, for which a fierce debate continues for more than a decade on the physical origin of its semimetal-to-insulator transition. Using Raman scattering, we have observed an incipient divergence in the uniform static electronic susceptibility. Critical fluctuations of the excitonic order give rise to quasi-elastic scattering of B2g symmetry, whose intensity grows inversely with temperature toward the Weiss temperature of Tw~237 K, which is arrested by a structural phase transition driven by an acoustic phonon of the same symmetry at Tc=325 K. Concurrently, a B2g optical phonon becomes heavily overdamped to the extent that its trace is almost invisible around TC, which manifests a strong electron- phonon coupling that has obscured the identification of the low-temperature phase as an excitonic insulator for more than a decade. Our result unambiguously reveals the electronic origin of the phase transition.

Chair: Yuki Motome


備考 : This event is jointly organized by the Korea Institute for Advanced Study and the University of Tokyo. “Correlated Electrons Virtual International Seminars (CEVIS)” https://sites.google.com/view/cevis2020/home
(公開日: 2020年07月22日)