Highlights of Joint Research

Synchrotron Radiation Laboratory

The Synchrotron Radiation Laboratory (SRL) was established in 1975 as a research group dedicated to solid state physics using synchrotron radiation. In 1989, the SRL started to hold the Tsukuba branch, a branch laboratory in the Photon Factory (PF), High Energy Accelerator Research Organization (KEK). The SRL consists of the accelerator physics group and the solid state spectroscopy group. The members of the accelerator group have been carrying out research works on the accelerator physics and developing various new accelerator related technology in collaboration with other SR facilities. The spectroscopy group has been not only serving users at the Tsukuba branch with technical supports and advice, but also carrying out their own research works on advanced solid state spectroscopy. SRL maintains an undulator called Revolver, two beamlines and three experimental stations: BL-19A for angle-resolved photoemission spectroscopy and soft X-ray emission spectroscopy experiments, respectively. In 2008, the new spin detector utilizing very low energy electron diffraction (VLEED) has started its normal operation. They will be available in October in 2009. The accelerator group performed the detailed design of the new 15-m undulator of the University of Tokyo in collaboration with the SPring-8 ID and accelerator groups. The four horizontal figure-8 undulator segments were already constructed and installed with a good alignment error in the long straight section of SPring-8. Field measurements of a phase shifter prototype started to be used in examining its performance. The accelerator group also studied future ERL (energy recovery linac) light sources and developed ERL components such as superconducting cavities and fiber laser oscillators for driving an ERL photocathode gun in collaboration with KEK, AIST and JAEA.

Neutron Science Laboratory

The Neutron Science Laboratory (NSL) has been playing a central role in neutron scattering activities in Japan since 1961 by performing its own research programs as well as providing a strong general user program for the university-owned various neutron scattering spectrometers installed at the JRR-3 reactor operated by Japan Atomic Energy Agency in Tokai. In 2003, the Neutron Scattering Laboratory was reorganized as the Neutron Science Laboratory to further promote the neutron science with use of the instruments in JRR-3. Under the general user program supported by NSL, 14 university-group-owned spectrometers in the JRR-3 reactor (20MW) are available for a wide scope of researches on material science, and proposals close to 300 are submitted each year, and the number of visiting users under this program reaches over 6,000 person-day/year.

Triple axis spectrometers and a high resolution powder diffractometers are utilized for a conventional solid state physics and a variety of research fields on hard-condensed matter, while in the field of soft-condensed matter science, researches are mostly carried out by using the small angle neutron scattering (SANS-U) and neutron spin echo (NSE) instruments. The upgraded time-of-flight (TOF) inelastic scattering spectrometer is also available through the ISSP-NSL user program.

Major research topics on the hard-condensed matter science cover stripe order in high-Tc superconductors, and closely related 2 dimensional systems, charge and orbital ordering in CMR manganites, quadrupole ordering in rare-earth based intermetallic compounds, spin dynamics of low dimensional dimmer systems, etc. On the other hand, the research topics on the soft-condensed matter science cover structural characterization of polymer gels, polymer blends, micelles, amphiphilic polymers, block copolymers, proteins, dynamics of brush-polymer on surface, slow dynamics of surfactants, pressure dependence of dynamics of amphiphilic membranes, and so on. In addition, there are a variety of activities on fundamental physics, neutron beam optics, developments of neutron scattering techniques. The NSL also operates the U.S.-Japan cooperative program on neutron scattering, providing further research opportunities to material scientists who utilize the scattering technique for their research interests.

The details of individual studies and research highlights in FY2008 are reported in the NSL-ISSP Activity Report vol.15. (http://quasi.issp.u-tokyo.ac.jp/actrep/actrep-15/index_pub_vol15.html).

Supercomputer Center

The Supercomputer Center (SCC) is a part of the Materials Design and Characterization Laboratory (MDCL) of ISSP. Its mission is to serve the whole community of computational condensed-matter physics of Japan with high performance computing environment. In particular, the SCC selectively promotes and supports large-scale computations. For this purpose, the SCC invites proposals for supported-guided research projects and hosts the Steering Committee, as mentioned below, to evaluate the proposals. The SCC operates two super-computers, System A and B. System A is Hitachi SR14000M that consists of 48 high performance nodes composed of tightly-coupled micro-processors. With the aid of the automatic parallelization of FORKAN compiler, a node of System A can be used as if it were a single-processor computer. System A has 2.8TB memory and archives 5.8 TFlops peak performance in total. On the other hand, System B, which is SGI Altix 3700/1280, is a parallel supercomputer with relatively loose coupling. It consists of 19 nodes interconnected by a gigabit Ethernet network. Each node is a distributed-shared-memory-type computer consisting of 64 Intel Itanium 2 CPUs interconnected by a rather high performance network and have 64 GB memory. System B archives 7.7 TFlops total throughput performance.

All staff member of university faculties or public research institutes in Japan are invited to propose research projects (called User Program). The proposals are evaluated by the Steering Committee of SCC. Pre-reviewing is done by the Supercomputer Project Advisory Committee. In school year 2008 totally 181 projects were approved. The total points applied and approved are listed on Table. 1 below.

The research projects are roughly classified into the following three (the number of projects approved):

First-Principles Calculation of Materials Properties (67)
Strongly Correlated Quantum Systems (40)
Cooperative Phenomena in Complex, Macroscopic Systems (75)

All the three involve both methodology of computation and its applications. The results of the projects are reported in ‘Activity Report 2008’ of the SCC. Everyyear typically four projects are selected for “invited papers” and published at the beginning of the Activity Report. In the Activity Report 2008, the following four invited papers are included:

“Vector spin chirality and multi-ferroic properties in one-dimensional spin-1/2 frustrated magnets”, by Shunshoke FURUKAWA, Masahiro SATO, Yasuhiro SAIGA, and Shigeki ONODA

“Jammed vortex matter” by Hajime YOSHINO, Tomoki KOBAYASHI, Bongsoo KIM, and Hikaru KAWAMURA

“Chemical dynamics accompanying electron-transfer” by Osamu SUGINO

<table>
<thead>
<tr>
<th>Class</th>
<th>Project</th>
<th>Application Points</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100K</td>
<td>150K</td>
<td>250K</td>
</tr>
<tr>
<td>B</td>
<td>2M</td>
<td>4M</td>
<td>6M</td>
</tr>
<tr>
<td>C</td>
<td>5M</td>
<td>10M</td>
<td>15M</td>
</tr>
</tbody>
</table>

Table 1. Research projects approved in 2008. The maximum points allotted to the project of each class are the sum of the points for the two projects of System-A and System-B. 1 k-point of System-A corresponds to charge for 0.373 hours per node, while the corresponding figure is 0.22 hours 6.64CPU for System-B.
The aim of this laboratory is to study the physical properties of solid-state materials (such as semiconductors, magnetic materials, metals, insulators, superconducting materials) under ultra-high magnetic field conditions. Such a high magnetic field is also used for controlling the new material phase and functions. Our pulse magnets, at moment, can generate up to 85 Tesla by non-destructive manner, and from 100 up to 730 Tesla (the world strongest as an in-door record) by destructive (the single turn coil and the electro-magnetic flux compression) methods.

They are opened for scientists both from Japan and from overseas, especially from Asian countries, and many fruitful results are expected to come out not only from collaborative research but also from our in-house activities. One of our ultimate goals is to provide the scientific users as our joint research with magnets capable of a 100 T, milli-second pulses in a non-destructive mode, and to offer versatile physical precision measurements. The available measuring techniques now involve magneto-optical measurements, cyclotron resonance, spin resonance, magnetization and transport measurements.

Our interests cover the study on quantum phase transitions (QPT) induced by high magnetic fields. Field-induced QPT has been explored in various materials such as quantum spin systems, strongly correlated electron systems and other magnetic materials. Non-destructive strong pulse magnets are expected to provide us with reliable and precise solid state physics measurements. The number of collaborative groups for the research is over 50 in the year of 2007.

Multiple extreme physical conditions combined with ultra-low temperatures and ultra-high pressures are also available.

A 210 MJ flywheel generator which is the world largest DC power supply (recorded in Guinness book of records in 1997/98) has been installed in the newly built DC Flywheel generator station at our Institute. The generator, once disassembled from the one used for Toroidal magnetic field coil in JFT-2M (JAERI Fusion Torus-2M) Tokamak nuclear fusion testing device, is now renewed as a power supply for the pulse magnets. The construction of the magnet service station has also been accomplished. The magnet technologies are intensively devoted to the quasi-steady long pulse magnet (an order of 1-10 sec) energized by the giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet. The flywheel giant DC power supply, and also used for the outer-magnet coil to realize a 100 Tesla nondestructive magnet.

Our destructive magnets, such as the single-turn coil and the electro-magnetic flux compression (EMFC) systems, would be oriented toward easier access and more reliable measurements for solid-state physics than previously obtainable. One of our recent successes was the achievement of over 730 T within a 4 MJ energy injection by the EMFC, in which a new type of primary coil with a simpler design was employed. These are oriented for developing new horizons in material science realized under such extreme quantum limit conditions.

The building for the flywheel generator (right hand side) and a long pulse magnet station (left hand side). The Flywheel giant DC generator is 350 ton in weight and 5 m high (bottom). The generator, capable of a 51 mega watt-out put power with a 210 mega joule energy storage, is planned to energize the long pulse magnet generating 100 Tesla without destruction.

Enhancement of Optical Second Harmonic Generation by Nitrogen Adsorption on Cu(001)

G. Mizutani, N. Kawamura, and F. Komori

Optical second harmonic generation (SHG) is a powerful tool for investigating the electronic states of a solid system because it provides information both on occupied and unoccupied electronic states around the Fermi energy. We have studied SHG from the clean and nitrogen (N) adsorbed Cu(001) surfaces. This system has attracted interest because a partially N-covered Cu(001) surface a well ordered nano-grid pattern is formed from alternating clean and N-adsorbed surface areas. The observed SHG signal was largely enhanced by the N adsorption. Surface SH responses of the Cu(001) surfaces based on electronic states were also studied using an ab initio approach, and the valence electronic states are compared with the results of angle resolved photoemission spectroscopy (ARPES). Figure 1 shows the experimental results for the incident polarization angle dependence of the p- and s-polarized SHG intensity from the N-saturated, N-adsorbed grid, and clean Cu(001) surfaces. The p-polarized SHG intensity has a maximum for the p-polarized incident light for both the clean and N-adsorbed surfaces. The maximum values both on the N-saturated and N-adsorbed grid surfaces are 30 times larger than that on the clean surface. The s-polarized SHG intensity has an enhancement of nearly 5 times from the clean and N-adsorbed incident light. The calculated band structure for the N-saturated surface is consistent with the results of the ARPES measurement as shown in Fig. 2. The polarization angle dependence of SHG calculated for the same surface qualitatively agrees with the experimental observations, and the enhancement is mainly attributed to the change of the surface electronic states due to the N-adsorption. On the grid surface, the p-SHG intensity generated by the p-polarized incident light is almost the same as that on the N-saturated surface. This is inconsistent with the simple assumption that the SHG signal originates from the N-covered c(2×2). The N-adsorbed area is 2/3 of the whole surface. Possible origins of the largely enhanced SHG on the grid surface are the lattice deformation due to the grid pattern formation and the presence of a long interface between the clean Cu surface and the N-adsorbed surface.

References

Authors

*Japan Advanced Institute of Science and Technology

+NHK Sci./Technical Research Laboratories

+Materials Science Laboratory

+University of Vienna

Oxide Switch

I. Ohkubo and M. Lippmaa

Various oxide thin film-based switching devices have been proposed. Non-volatile switching between conducting...
Spin Waves, Vortex Excitations and Magnon BEC of Superfluid 3He-A in Restricted Geometry, as in Parallel-Plates and in Oriented Aerogel

Y. Sasaki, O. Ishikawa, and M. Kubota

3He-A is a unique anisotropic superfluid state, composed with p-wave Cooper pairs of 3He atoms. We present here recent two examples of our study, in which the orientation axis for d vector, which represents the spin component of the Cooper pairs, is made perpendicular to d vector, which represents the orbital angular momentum of the pair. The first example uses the sample placed between parallel plates with $12.5 \mu m$ gap, where we discuss a new observation of new satellite signal under rotation and possible half quantized vortices and Fre'edericksz transition [1]. Whereas the second example uses Aerogel, a very dilute material with large open space of 98% volume, and with anisotropic orientation of the density gradient, to fill 3He-A-like phase. We find macroscopic coherent precession of magnetization in this phase for the first time. This phenomenon is regarded as a manifestation of the magnon Bose Einstein Condensation (BEC) in the magnetic superfluid 3He-A[2].

Example 1: Quantized vortices with half-integral circulation, which are forbidden from existing in a conventional superfluid because of the single-valuedness of the wave function, are theoretically predicted to exist in superfluid 3He-A if the order parameters I and d form a I_d texture. To form the I_d texture, we need to superfluid 3He-A between parallel plates with a $12.5 \mu m$ gap and applied a magnetic field of $H = 26.7$ mT perpendicular to the plates to take NMR and order d perpendicular to I. NMR spectra exhibit a negative shift peak which probes that the uniform I and d texture is realized in our cell and show a new satellite signal under rotation. The rotation dependence of the satellite signal is interpreted that a Fre'edericksz transition of I and d texture is induced by rotation above 1.0 rad/s and vortices start to appear above 1.8 rad/s [1].

Figure 1 shows Rotation dependence of normalized size of the NMR satellite signal at 0.81 T_c, which indicates a transition, which we interpret as Fre'edericksz transition, where uniform textural state transforms into a nonuniform one. Actually, from this signal we analyze that singly or half quantized vortices start to penetrate into the sample from the edge at T_c. An alternative explanation has been proposed by H. Y. Kee and K. Makii[3], involving half quantum vortices.

Example 2: We report the first observation of coherent precession of magnons in superfluid 3He-A-like phase (CPA) in aerogel [4]. The coherent precession in bulk 3He-A-phase is unstable due to the positive feed-back of spin supercurrent to the gradient of phase of precession. It was predicted that the homogeneouse precession will be stable if the orbital momentum of the 3He-A-phase can be oriented along the magnetic field. We have succeeded to prepare this configuration by immersing uni-axially deformed anisotropic aerogel in 3He. The dissipation rate of the coherent precession states in aerogel is much larger than that in bulk He B-phase. We propose a mechanism of this dissipation. Actually this macroscopic coherent precession (MCP) is an evidence of BEC of magnons in 3He-A as discussed in [5].

The coherent precession in 3He-A is partially reported in AR2007b.

References

Authors
M. Yamashita, H. Sasaki, K. Izumina, A. Matsubara, O. Ishikawa, T. Takeda, M. Kubota, T. Mizushima, and M. Bunkov

Pressure-Induced Superconductivity in Iron-Pnictide Materials

H. Okada, H. Takahashi, and Y. Uwatoko

High pressure studies have been playing a very important role for the investigations on the iron-pnictide superconductors, as well as carrier doping through substitution of atoms. In the earliest stage, applying pressure for optimally doped LaFeAsO$_x$F$_y$ increased T_c to 43 K, which is the significantly large enhancement of T_c. Successive studies revealed the pressure-induced superconductivity for the undoped iron-pnictides [1]. The early work on LaFeAsO$_x$F$_y$ shows the comparatively lower maximum T_c, where the superconductivity was observed above 21 K at 12 GPa, where the zero resistivity was observed [2]. This pressure-induced superconductivity was firstly discovered in the 1111 system. The $T_c$$_0$, where the dI/dT curve shows peak value, is suppressed by pressure, while T_c is enhanced with increasing pressure, as shown in Fig.2. The lightly doped and undoped LaFeAsO$_x$F$_y$ shows the comparatively lower maximum T_c, which is higher than highly doped materials. This is thought that the lightly doped one is close to the magnetic phase. From the latest result on LaFeAsF, the pressure-induced superconductivity was observed above the pressure, where the T_c was completely suppressed with pressure.

Figure 3 shows the p(T_c) curves of Sr$_2$Fe$_x$As$_2$. T_c is defined as the same manner as LaFeAsO$_x$F$_y$, zero resistance was observed.

LaFeAsO$_x$F$_y$ increased T_c to 43 K, which is the significantly large enhancement of T_c. Successive studies revealed the pressure-induced superconductivity for the undoped iron-pnictides [1]. The early work on LaFeAsO$_x$F$_y$ shows the comparatively lower maximum T_c, where the superconductivity was observed above 21 K at 12 GPa, where the zero resistivity was observed [2]. This pressure-induced superconductivity was firstly discovered in the 1111 system. The $T_c$$_0$, where the dI/dT curve shows peak value, is suppressed by pressure, while T_c is enhanced with increasing pressure, as shown in Fig.2. The lightly doped and undoped LaFeAsO$_x$F$_y$ shows the comparatively lower maximum T_c, which is higher than highly doped materials. This is thought that the lightly doped one is close to the magnetic phase. From the latest result on LaFeAsF, the pressure-induced superconductivity was observed above the pressure, where the T_c was completely suppressed with pressure.

Figure 3 shows the p(T_c) curves of Sr$_2$Fe$_x$As$_2$ using a cubic anvill press. The resistivity shows rapid decrease below 150 K, which is related to the structural and magnetic transitions (T_m). In the low temperature, the sudden decrease of the resistivity caused by superconductivity was observed. T_c increased up to 21 K at 12 GPa, where the zero resistivity was observed [2]. This pressure-induced superconductivity was firstly discovered in the 1111 system. The $T_c$$_0$, where the dI/dT curve shows peak value, is suppressed by pressure, while T_c is enhanced with increasing pressure, as shown in Fig.2. The lightly doped and undoped LaFeAsO$_x$F$_y$ shows the comparatively lower maximum T_c, than highly doped materials. This is thought that the lightly doped one is close to the magnetic phase. From the latest result on LaFeAsF, the pressure-induced superconductivity was observed above the pressure, where the T_c was completely suppressed with pressure.

Figure 3 shows the p(T_c) curves of Sr$_2$Fe$_x$As$_2$ using a cubic anvill press. Like as LaFeAsO$_x$, the T_c was suppressed and superconductivity emerged under high pressure [2]. The zero resistivity was observed at 5 GPa, which was the first observation for Sr$_2$Fe$_x$As$_2$, although several pressure-induced superconductivity has been observed in AFe$_2$As$_2$ ($A = Ca, Sr, Ba$) system.
Fabrication and Efficiency Evaluation of a Hybrid NiCrAl Pressure Cell up to 4 GPa
N. Fujimura and Y. Uwatoko

Pressure has become increasingly important in the research on strongly correlated electron systems, because several 3d-transition-metal oxides, heavy fermion systems, and organic conducting systems exhibit a variety of phases with applied pressure. The phases include charge-ordering (CO), magnetic ordering, paramagnetic metallic, and superconducting (SC) states. In the case of pressure-induced superconductivity, a spin- or charge-ordering phase often appears at the lower pressure side on a pressure-temperature (P-T) phase diagram. Coexistence of the ordering states with the SC state, or anomalous metallic behavior near the quantum critical point (QCP), where the ordering state becomes unstable, is one of the current important topics in strongly correlated electron systems. In these compounds, some have been precisely investigated using various techniques under pressure, whereas the others have not. It is an important factor whether the onset pressure is achieved by a piston-cylinder-type pressure cell. The current borderline lies around a pressure of 2-7.3 GPa. Recently, NiCrAl or MP35N cylinders have attracted much attention as post-WC cylinders, because they are nonmagnetic and possess high tensile and yield strengths. In particular, NiCrAl contains fewer impurities than MP35N, and is suitable for magnetic measurements. In particular, NiCrAl contains fewer impurities than MP35N, and is suitable for magnetic measurements. In the present work, we applied loads up to 15.0 ton to a hybrid NiCrAl pressure cell and investigated the pressure limit and the efficiency.

We used a special press system arranged on the top side of the variable-temperature insert (VTI), which is expressed by

\[\Delta \lambda = \mathrm{const} \times \nu \]

where \(\Delta \lambda \) is the NQR frequency from Fig. 2(b) as

\[\nu = 0.365 \text{ (nm)} \]

and the R1 shift. As seen from the figure, the curve tends to bend over 2% when a load of 15.0 ton was applied. The fracture strain of high-strength materials is usually not great, sometimes less than 3 %, therefore the upper pressure limit of the NiCrAl cylinder is at most 4 GPa. Furthermore, a crack was observed in the WC piston after releasing pressure from 4 GPa. The compression strength is 6 and 4.5 GPa for magnetic and nonmagnetic WC, respectively. In the present experiment, we used the nonmagnetic WC, and therefore the appearance of the crack is not a surprise. To apply further pressure with this pressure cell, improvements to materials, especially for the piston, are also required as well as an effective sealing technique and the total design of the pressure cell.

References

Development of Electromagnetic Wave Absorber for Sub-terahertz Region in e-type \(\text{Al}_2\text{Fe}_{2-x}\text{O}_3 \)
M. Nakajima, S. Ohkoshi, and T. Suemoto

Recently, we have been studying the development of the electromagnetic wave absorber for millimeter wave in sub-terahertz range. This range is very important for next-generation wireless communication. The development of the electromagnetic absorber in higher frequency region is urgent theme needed for the next-generation wireless communication. In general, when an electromagnetic wave is irradiated to a ferromagnetic, the resonance due to gyromagnetic effect is caused. This resonance is called a "natural resonance" (ferromagnetic resonance) (Fig. 1). The resonance frequency is proportional to the magnetic moment of the material (Fig. 2), which is very attractive for practical applications. For this reason, aluminum is the third most common atom, the production cost is very economical, which is very attractive for practical applications.

Figure 2 shows the absorption spectra. The frequencies of the absorption peaks for \(x = 0.40, 0.30, 0.21, 0.09, 0.06, 0.00 \) were observed at 125, 145, 162, and 182 GHz, respectively. In addition, aluminum is the third most common atom, the production cost is very economical, which is very attractive for practical applications.

High-performance millimeter wave absorbers composed of a series of \(\text{Al}_2\text{Fe}_{2-x}\text{O}_3 \) were prepared by a combination method between the reverse-micelle sol-gel techniques. The average particle sizes of the materials are between 25-50 nm. These nanomagnets have an extremely large \(H_e \) at 300 K of 10.2 kOe, 14.9 kOe, and 22.5 kOe for \(x = 0.4, 0.4, 0.3, 0.2, 1.0 \). These particles are also required as well as an effective sealing technique and the total design of the pressure cell.

References

Fig. 1. Steady-load control system equipped on the top flange of variable-temperature insert (VTI). A load is transferred to the pressure cell via a compression rod. The pressure cell was screwed onto a variable-temperature insert (VTI). A load is transferred to the tension column, the CuBe sleeve, and the CuBe backup support act as a frame of a conventional press system.

Fig. 2. (a) Load dependence of the R1 shift in ruby fluorescence. (b) Relationship between the NQR frequency of CuO and the R1 shift. The pressure cell was screwed into the tension column made of MP35N, and the load is transferred to the pressure cell via a compression rod. The pressure cell was screwed onto a tension column. The load is supported by the tension column, the CuBe sleeve and backup support. These components act as a frame of a conventional press system.

Fig. 2. (a) Load dependence of the R1 shift in ruby fluorescence. (b) Relationship between the NQR frequency of CuO and the R1 shift. The pressure cell was screwed into the tension column made of MP35N, and the load is transferred to the pressure cell mediated by the inner compression rod. The tension column, the CuBe sleeve, and the CuBe backup support act as a frame in a conventional press system. Steady load control becomes possible owing to feedback from the pressure cell, even at low temperatures where pressure decrease is expected because of contraction of pressure medium liquid. In the present work, two trimmers capacitors are equipped near the pressure cell to adjust NQR frequency and impedance matching. They are connected to tuning knobs outside the top flange by extension rods and can be controlled even at low temperatures.

Fig. 2(a) shows the load dependence of the R1 shift. As seen from the figure, the curve tends to bend with the increasing load. The trend becomes remarkable when the heavy load is imposed. The bend is attributable to the loss of efficiency during the pressurizing process. Fig. 2(b) shows the relationship between the NQR frequency and the R1 shift. We obtained the pressure dependence of the NQR frequency from Fig. 2(b) as \(\Delta \nu = 0.365 \text{ (nm)} \). CuO is often used for pressure calibration in nuclear magnetic resonance (NMR) because the NQR frequency also shows a linear relation with applied pressure. We performed the NQR measurement of CuO and ruby fluorescence simultaneously using the steady-load control system mentioned above. Fig. 2(a) shows load dependence of the R1 shift. As seen from the figure, the curve tends to bend downward with increasing load. The trend becomes remarkable when the heavy load is imposed. The bend is attributable to the loss of efficiency during the pressurizing process.
Rashba Spin Splitting of Surface States on Ti/Ge(111)-(3×1)
S. Hatta and T. Aruga

The spin splitting of two-dimensional (2D) electronic states due to the Rashba spin-orbit (SO) interaction is attracting much attention as a key to manipulate electron spins in solid state. [1] This type of spin splitting is caused by the out-of-plane asymmetry of the electronic potential. A surface makes such a potential asymmetry, and thus, intrinsic spin splitting is realized at surfaces. Sizable splittings exceeding ~0.1 eV have been observed on the surfaces of heavy elements such as Au and Bi. The potential of these high-Z nuclei contributes to a strong SO interaction. On the other hand, the observation of the giant Rashba splitting on Ag surfaces covered with submonolayer Bi [2, 3] indicates that the surface modification with heavy elements can enhance the spin splitting on surfaces of lighter elements, including semiconductors such as Si and Ge.

Here we report on the Rashba spin splitting of the Ti-induced surface state on the Ge(111) surface [4]. The Ti/Ge(111)-(3×1) surface has a quasi-one-dimensional structure, called “honeycomb-channel (HCC) structure”, with Ge adatoms of 4/3 monolayer (ML) and Ti of 1/3 ML. The HCC structure is commonly found for the other Si(111) and Ge(111) (3×1) surfaces with monovalent metals (alkali metals) and a vacancy. These surfaces have similar electronic structures identified as the dangling bonds of the Si (Ge) adatoms. However, the spin splitting of these states has never been addressed. We found that the hybridization of the Ti and Ge orbitals induces large spin splittings on the surface states.

Figure 1 shows the calculated electronic structure of the (3×1) surface. Five-related states are found in the bulk band around the Fermi level. Using angle-resolved photoelectron spectroscopy with synchrotron radiation at the ISSP beamline 18A of Photon Factory, we confirmed the corresponding occupied bands. These bands are split to pairs of spin-polarized bands respectively. Among them, large spin splittings of 0.1–0.2 eV are found for the S1 and S3 bands, indicated by the blue and red curves, respectively. The splittings are inherent at the middle of TA and C. The spin degeneracy at the k points of Γ2, where Γ represents the 2D reciprocal lattice vector, results from the coupling of the time-reversal symmetry and the translational symmetry. In the simple model with the 2D free electrons, the spin splitting shows a linear k dependence as Δk ≈ 2αk, where α is called the Rashba parameter. However, the spin splitting on the (3×1) surface seems to become non-linear at k away from the proximity of the degeneracy points. This is partially due to the change of the orbital hybridization with k. The orbital analysis of calculated states indicated that the largely spin-split states have a large contribution of the Ti 6p orbitals, as well as the Ge 4s- and 4p-hybridized orbitals. This is clearly shown in charge density plots of S1 and S3 at the A point (Fig. 2). The state of S1 has a dominant dangling-bond character of the Ge adatom facing Ti. Moreover, the wavefunction of the spin-split state is spread over a few Ge layers. On the other hand, the charge distribution of S3 is localized in the overlayer. Considering the charge density just around Ti, we found an asymmetry of the p-like distribution, reflecting the hybridization with Ge. According to an expression of αk = Δk sin(2θ0/2c) [5], where θ is the potential and ψ(θ) the wavefunction, while (ω(θ)) is approximately equal to the nuclear, the asymmetric distribution of the wavefunction can lead to a large spin splitting collaborated with the nuclear potential, as observed on this surface. The hybridization of 6s-6p would be also important for the Rashba spin splitting of surface states induced by other heavy p-block elements such as Pb and Bi.

In conclusion, we have shown that the adsorption of submonolayer Ti induces the largest observed spin splitting on Ge(111). The significant contribution of Ti 6p orbital is shown for the largely spin-split states.

Quantum Phase Transition in the 3d Itinerant Antiferromagnet
H. Kadowaki and T. J. Sato

In recent years, novel viewpoints of matter have been exploited by quantum phase transitions (QPT), zero-temperature second-order phase transitions tuned by pressure or other controlling parameters. Among QPT, the state of matter is characterized by singular behavior of fluctuating order parameters having both quantum mechanical and thermal origins. Quantum phase transitions are investigated in heavy fermion systems ranging from high temperature superconductors, metal-insulator transitions, to heavy fermions. Although a number of QPTs have been investigated experimentally and theoretically, many problems are under controversial debates. One of such debates is nature of QPT in itinerant antiferromagnets (AFM), referred to as the spin density wave (SDW) QPT. Experimentally, thermodynamic and transport properties are in rough agreement with theories of the SDW QPT. However, most neutron scattering studies seem to contradict expectations of the SDW QPT, exemplified by the novel I/S scaling of the AFM fluctuations observed in the heavy fermion CeCu6Sn5, suggesting the existence of a new type of QPT [1]. In order to terminate the controversy, in this work we have performed neutron inelastic scattering study on the prototypical 3d itinerant antiferromagnet (V1−xTixSb2Se5 (x = 0.1)), which is known to be in the proximity to the QPT separating paramagnetic and antiferromagnetic metal.

Figure 2 shows results of constant-Q scans at various temperatures in the paramagnetic region, which are converted to generalized susceptibility Im(Q, χ), which was found to be well approximated by the following Lorentzian function: Im(Q, χ) = −[Q(1+2Q))/(1+(Q/D)2 + [(Q/E)2 + (Q/F)2]])2, where Q is the AFM modulation vector, χ is the excitation energy, Q, and Q components of Q along a and b axis in the ab plane. D and F are temperature independent parameters, whereas Q(1) and Q(2) are the wave-vector-dependent magnetic susceptibility and characteristic energy. Among several other predictions, the SDW QCP theory predicts temperature dependence of the characteristic energy as (Q) ≈ Qc + Qc2. To confirm this prediction, we have plotted the obtained Q(2) parameters at various temperatures versus T2 in Fig. 2. As seen in the figure, the T2 behavior was confirmed up to T = 80 K. This confirms that this QPT in 3d itinerant antiferromagnet is governed by SDW QPT [2].

Fig. 2. Temperature dependence of the characteristic energy of the AFM spin fluctuations is plotted as a function of Q. The circles represent the prediction for the SDW QPT and the solid line is fit using the SCR theory. The inset shows temperature dependence of the product (T/Q2).

References

Authors

Acknowledgements
** current address: NIST Center for Neutron Research
** current address: Oak Ridge National Laboratory
** current address: Meiji University

References

Authors
M. Nakajima, A. Namai, S. Sakurai, S. Okishio, and T. Suemoto
The University of Tokyo
Quantum Phase Transition in Two-dimensional Antiferromagnets (CuCl)La(Nb$_2$Ta$_x$)O$_{7+y}$

H. Kageyama, Y. Ueda, and K. Kindo

Chimie douce offers rational design of the magnetic

lattices in nonmolecular solids. For example, a new class of layered compounds (CuX)$_2$(A$_x$B$_{1-x}$O$_{2n+1}$) (where $X = Cl, Br$, $A = La^3+$, B^+, X^-, A^+, B^0, X^0, A^0, Br^-, Cl^-, X^-, A^0, B^0, X^0), $n = 2, 3$) has been obtained by low-temperature ion-exchange reactions [1-6]. As shown in Fig. 1(a), the magnetic CuA layer is separated well by magnetically inert A$_x$B$_{1-x}$O$_{2n+1}$ perovskite slabs, making them good two-dimensional spin-1/2 magnets. Several exotic quantum magnetic phenomena have been obtained by collective single- or ground-state states in (CuCl)LaNbO$_6$, collinear order at 32 K in (CuBr)LaNbO$_6$, and 1/3 magnetic frustration in (CuBr)Sr$_2$NbO$_5$. In order to obtain the origin of the spin-singlet formation in (CuCl)LaNbO$_6$, we investigated the magnetic properties of (CuCl)La(Nb$_2$Ta$_x$)O$_{7+y}$ by means of transmission electron microscopy (TEM), susceptibility, pulsed high-field magnetization, and elastic/inelastic neutron scattering [7]. A crucial advantage of studying this solid solution is that the magnetic CuCl plane is preserved and that pentavalent Nb and Ta ions have almost the same radius (0.64 Å). The X-ray diffraction patterns of the 0 < x < 1 samples showed designed synthesis of the solid solution having nearly the same tetragonal cell parameters as those of (CuCl)LaNbO$_6$ and (CuCl)LaTaO$_6$. The TEM experiments for (CuCl)LaNbO$_6$ carried out typically at room temperature using a JEM2100F system with an operating voltage of 200 kV revealed weak reflections such as (1/2, 0, 0) and (0, 1/2, 0). (b) TEM image and (c), (d) the corresponding EDS maps for (CuCl)La(Nb$_2$Ta$_x$)O$_{7+y}$, respectively. A slight reduction of the spin gap with increasing x suggests that the collinear order state coexists with the spin-singlet state. The neutron diffraction study (Fig. 3) revealed that (CuCl)LaTaO$_6$ undergoes, in spite of unaltered cell parameters and preserved CuCl plane, collinear order with T_N = 7 K. In the intermediate region (0 < x < 1), we observed the collinear order with a significantly reduced magnetic moment but with a nearly constant T_N, suggesting that the collinear order state coexists with the spin-singlet state.

References

Authors

*Kyoto University

Jammed Vortex Matter
H. Yoshino and T. Nagawa

Irrationally frustrated Josephson junction array (JJA), namely JJA with irrational number density of vortexes par plaquette induced by external magnetic field, is a highly frustrated system which refuses to be stabilized in simple periodic manners [1]. The irrational JJA with spatially isotropic Josephson coupling on the square lattice is believed to remain in a vortex liquid state down to zero temperature [2]. However we found strong numerical evidences obtained by extensive Monte Carlo simulations for static properties and RCSJ (Resistively and Capacitively Shunted Junction) simulations for transport properties [3] that even an infinitesimally weak anisotropy of the Josephson coupling into, say x and y directions induce formation of smectic layers of zigzag vortex stripes. In Fig. 2 we show that the vortex pattern is essentially random in zigzag patterns but the whole frozen-structure can slide into the direction of stronger coupling due to phason like gapless soft modes. Consequently the system behaves as an unusually fragile matter [3]: solid like (non-Ohmic, superconducting) response against external shear on the phase variables (injection of the external electric current) perpendicular to the layers but liquid like (Ohmic) response against shear parallel to the layers. By the same token, the superconducting phase coherence remains disordered down to zero temperature, which is analogous to the spin-chirality decoupling phenomena observed in frustrated magnets [4].

Our motivation to study the anisotropic JJA originates from the idea of an upgrade to a class of fractional models which exhibit the so called Aubry’s transition [5] which is a prototype of jamming transition [6]. We found the current vs voltage curves exhibit scaling properties similar to those of the flow curves (stress-versus shear-rate) studied in the non-linear rheology of granular materials around jamming point [7]. In the Fig. 2 we summarize our results by showing the current vs voltage curves exhibit scaling properties similar to those of the flow curves (stress-versus shear-rate) studied in the non-linear rheology of granular materials around jamming point [7]. In the Fig. 2 we summarize our results by showing the current vs voltage curves exhibit scaling properties similar to those of the flow curves (stress-versus shear-rate) studied in the non-linear rheology of granular materials around jamming point [7]. In the Fig. 2 we summarize our results by showing the current vs voltage curves exhibit scaling properties similar to those of the flow curves (stress-versus shear-rate) studied in the non-linear rheology of granular materials around jamming point [7]. In the Fig. 2 we summarize our results by showing the current vs voltage curves exhibit scaling properties similar to those of the flow curves (stress-versus shear-rate) studied in the non-linear rheology of granular materials around jamming point [7].

In addition to the JJA, we also studied the transport (theoretical) properties of the semi-elastic model with the sminoidal coupling in the original JJA model into one direction is replaced by an elastic coupling. The latter model is presumably closer to the friction model [5]. Indeed we found the scaling function of the current-voltage curve of the semi-elastic model is almost indistinguishable from the master flow-curve observed in granular systems [7]. Further investigations to clarify relationships among the JJA, semi-elastic model and the 1-d friction models [5] will be certainly rewarding.

Whether geometrical frustration alone can realize glassy phases is a long-standing issue. Halsey [1] has envisioned that the irrationally frustrated JJA can exhibit a glassy phase. Our observations suggest the anisotropic irrationally frustrated JJA realizes floating zigzag stripe glass states. The intriguing question is whether these ‘states’ constitute real thermodynamical glass states. We plan to perform further investigation to give a definitive answer to this fundamental question.

References

Authors
Y. Narumi, K. Kindo, and H. Kawamura*

*University of Tokyo

Chungwon University

Evidence of Spin Singlet Ground State in the Frustrated Antiferromagnetic Ring Cr$_x$Ni

Y. Furukawa, Y. Narumi, and K. Kindo

Recently there has been intense experimental and theoret- ical effort in synthesis and investigation of nanoscale molec- ular magnets, which are composed of a control able number of transition metal ions [1]. The discovery of
Field-Induced Magnetic Phase Transitions in Multiferroic RbCoBr$_3$

M. Tokunaga and Y. Nishiwaki

Recently, emergence of direct coupling between magnetism and electric polarization in ferroelectric magnets has attracted considerable attention in condensed-matter physics. Since magnetic moment (M) and electric polarization (P) have different parity for time-reversal and spatial-inversion operation, linear combination between the both order parameters usually does not contribute to the free energy. Strong coupling between the both is put into reality when some kinds of spatially modulated spin structures set in. As a typical example, magnets with cyclodial spin states have been the most extensively studied, in which the accompanying P is caused by the anti-symmetric exchange interaction between the adjacent spins [1,2]. On the other hand, another multiferroic, RbCoBr$_3$, with a spin-symmetry exchanging term plays the essential role is less understood although theoretical calculation predicts the presence of the larger P in this mechanism [3].

In this context, we brought our attention to a frustrated Ising magnet of RbCoBr$_3$. In this material, spins in the Co$^{2+}$ ions construct quasi-one-dimensional antiferromagnetic chains along the c-axis. The chains form a triangular lattice within the ab-plane (see inset of Fig. 1) having antiferromagnetic nearest neighbor interaction. As a consequence of this frustration, successive magnetic transitions, i.e. from partial disorder to ferrimagnetic states, take place with decreasing temperature [4]. Dielectric measurement revealed that these magnetic transitions are accompanied with a significant change in P [5]. Due to the strong long-range anisotropy, this frustrated crystal is quite novel and interesting and it thus requires more direct experimental evidence. In order to elucidate the ground state of the Cr$_{N-1}$Ni system from experimental point of view, it is important to investigate the magnetic properties at much lower temperature i.e. well below the lowest energy gap. For the purpose of the present study we carried out high field magnetization measurements at very low temperatures down to 0.1 K.

Figure 2(a) shows the magnetization (M) curves for Cr$_{N-1}$Ni at $T = 0.1$ K for increasing magnetic fields, where a clear step-wise increase of magnetization is observed. Our experimental results clearly show an evidence of a spin singlet ground state for the Cr$_{N-1}$Ni system and allow us to establish the energy separation of the low-lying quantum magnetic states. The experimental results are in good agreement with predictions from theoretical calculations. In particular, the width of the steps in the field-dependence of the magnetization show that sizeable Dryzholoshinski-Moriya (DM) interactions are present and lead to anticrossings between states of different total spin.

References

Authors

M. Tokunaga and Y. Nishiwaki

Tokyo Women’s Medical University
International Conferences and Workshops

International Spring School on “Sub-10 nm Wires”
May 28-30, 2008
Y. Hasegawa, F. Komori, Y. Kuk, Q. Xue, J. Yoshinobu, and S. Hasegawa

Electronic states and transport in molecules and nanowires have recently attracted much attention. The aim of the present international spring school was to introduce fundamental knowledge on physics and chemistry of low-dimensional electronic systems for young researchers in this interdisciplinary field of nanoscience. It was co-organized by A3 Foresight Program “Sub-10 nm Wires” and ISSP.

The school consisted of the following three lectures on electronic states and transport properties in low dimensional systems, and a poster session.

(A) Quantum Transport
Professor Tsuneya Ando (Tokyo Institute of Technology)
Over view and details of theoretical approaches on the quantum transport were given with a focus on carbon nanotubes and a few layer graphenes.

(B) Quantum Physics of Thin Metal Films
Professor Tai-Chang Chiang (University of Illinois)
Quantization of the electron energy levels in metallic thin films was discussed from the principle of photoelectron spectroscopy to the detailed analyses of interface scattering.

(C) Fundamentals of Nanoelectronics
Professor Supriyo Datta (Purdue University)
Fundamentals and his original methods on quantum transport were given including advanced discussion on spin transport and energy dissipation.

More than 200 students (51 from abroad) attended the lectures, and 50 posters were presented. This school was financially supported by JSPS, NSFC, KOSEF and ISSP.

Topological Aspects of Solid State Physics
June 2-22, 2008
M. Kohmoto and M. Oshikawa

As the third in the series of International Workshops organized by ISSP theory group, “Topological Aspects of Solid State Physics” (TASSP) was held for the first three weeks of June 2008 at ISSP. In the following week (June 23 – June 27), a Symposium with the same title was held at Yukawa Institute for Theoretical Physics (YITP), Kyoto University. The Workshop part and the Symposium part were sponsored by ISSP and YITP, respectively. Both parts were also sponsored by Institute for Complex Adaptive Matter (ICAM-I2CAM) with U.S. NSF Grant DMR-064546. The number of registered participants in the entire period was 110 (72 in the Workshop at ISSP), including 26 invited participants (17 in the Workshop at ISSP) from overseas. In this report, we mostly focus on the activities in the Workshop at ISSP, which was co-chaired by Mahito Kohmoto and Masaki Oshikawa of ISSP with support from many people inside and outside ISSP.

Application of topological notion to condensed matter physics started several decades ago. One of the most notable examples is quantum Hall effect where the quantization of a physical quantity (Hall conductance) may be understood in terms of topological invariant (Chern number). Recently, more variety of systems is found to exhibit exotic quantum behaviors, and ideas based on topology appear to be essential in understanding them. These include spin quantum Hall effect, graphenes, topological phases of quantum spin systems. While each of these subjects is certainly worth individual attention, the purpose of this Workshop was to cultivate unified understanding of those diverse phenomena, based on topological concepts.

Reflecting the concept of the Workshop, there was a wide range of subjects of talks. While the Workshop is largely oriented towards theorists, three talks were given by experimentalists at ISSP to discuss their recent results from the topological perspective. There were 22 talks during the three weeks of Workshop at ISSP, and on average there were more than 20 people in the audience for each talk.

The main aim of the Workshop was to encourage informal discussions and collaborations. In order to serve the purpose, at most only two talks were scheduled each day to leave ample time for discussion. This format was well received by the participants, and in fact we could always hear lively discussion during the free time. As an outcome, several publications based on collaborations initiated at the Workshop have been already reported. The program and other details of the Workshop, including videos of the talks, can be found at the Workshop web page URL http://www.issp.u-tokyo.ac.jp/public/TASSP/index.html.

Supercomputing in Solid State Physics 2009
February 16-19, 2009

Every year, we host a domestic workshop in which most of the heavy users of the ISSP supercomputers get together and exchange new ideas. At the end of the school year 2008, the present supercomputer system is finishing its 4th year of the current 5 year lease contract. We considered that this would be a good opportunity to have an international event by extending our annual workshop, in order to review most important recent results in computational physics and stimulate further developments in both methodology and applications. With this background, we invited 40 speakers including 12 from overseas. In addition to the oral presentations by the invited speakers, there are 46 poster presentations. Everyday we had audience of 80-90 who participated in lively discussions. Reflecting the diverse spectrum of the users of the ISSP supercomputer, a number of topics were picked up from various fields of physics, including hydrogen storage systems, ultra-cold atoms in laser traps, flow of blood cells, and even initial formation of the universe. In spite of this diversity, however, we discovered a lot of knowledge and techniques that are, or can be, shared by many apparently different fields, which was one of the main objectives of the event.

URL: http://www.issp.u-tokyo.ac.jp/public/scissp/
Charge Fluctuation and Nonlinear Conduction of Molecular Conductors

Nonlinear conduction of charge-ordered molecular conductors is a hot topic in these days. Owing to the electric field response of charge fluctuation, the threshold voltage is low, so that the intrinsic non-equilibrium state can be studied. As a result, the dc-ac converter (synchronization) as an organic thyristor and the appearance of the metastable state, namely key words of non-equilibrium system, have been observed. In this workshop, the recent progress of experimental and theoretical results, development of materials, dynamical crystal structure analyses under electric field, optical measurements, time-resolved nonlinear conduction, nonlinear conduction under magnetic field, theoretical studies of nonlinear conduction, etc., has been discussed. More than 66 researchers have joined and had hot discussions. The participants commented that this workshop is very educational about recent progress of nonlinear conduction. We hope that this fruitful workshop triggers the new development of our researches.

International Spring School on “Sub-10 nm Wires”

This ISSP workshop was held as a part of the international workshop of the same title. The school consisted of the three lectures on electronic states and transport properties in low dimensional systems, and a poster session by the participants. The details are given in the section of “International Conferences and Workshops”.

Recent Developments in the Physics of Heavy Fermions

Heavy-fermion systems have been extensively studied since the discovery in late 1970’s. It is now well established that the Kondo effect of spin origin and the magnetic quantum criticality are important ingredients of the heavy-fermion states. This “classical” view of heavy fermions has recently been challenged by the discovery of f-electron compounds whose mass enhancement is quite immune to strong magnetic fields. This suggests a new mechanism for the formation of heavy fermions possibly arising from multipole degrees of freedom and/or a rattling motion of atoms. This workshop was organized to bring together researchers working in this field to discuss various new aspects of the heavy-fermion physics as well as new developments in experimental techniques. Topics discussed in the workshop included dHvA and PES experiments on heavy fermions, heavy-fermion superconductors, multipole orderings and fluctuations, rattling properties, heavy-fermion theories and new materials. We had 245 participants in total, and 45 oral and 25 poster presentations were given in the workshop.

Supercomputing in Solid State Physics 2009

See the section of “International Conferences and Workshops”.

The 2nd Workshop on the Science and Technology Based on the Advanced Coherent Light Sources: “Progress of Photon Science at Extreme Wavelengths”

March 2-3, 2009
T. Suemoto

The laser based coherent light sources in the extreme ultraviolet and soft X-ray regions have been developed at ISSP, Riken, JAERI and some other research institutes in Japan. The available photon energy is now extended to several hundreds electron volts at the high energy side and the shortest pulse width reaches in the range of one hundred attoseconds. High photon flux and high stability are achieved and the new innovative technologies such as fiber lasers accelerate the field. Using these newly developed laser light sources, novel spectroscopic methods such as attosecond molecular spectroscopy, high resolution photo-electron spectroscopy, inner shell non-linear spectroscopy, ultrafast imaging are proposed and some of them are demonstrated. In order to take initiative in this new field of photon science and widen the application, ISSP and the Graduate School of Frontier Sciences propose an establishment of “Advanced Coherent Light Laboratory” at Kashiwa campus. This workshop has been organized to present this Kashiwa plan to the large audience outside the university and to encourage the development of this new field by the close collaboration among the laser engineers, solid state physicists and synchrotron users. Twenty presentations are given in the sessions (1) Short wavelength lasers and their prospects (2) Research using short wavelength lasers, (3) From synchrotron radiation to lasers (4) From visible to shorter wavelengths (5) Exploration of new physics. During the free discussion time, four talks initiated discussions on the necessity of a middle scale facility for photon science. The total number of attendants on the first and the second day amounted to 130.

Design and Sciences of the KEK-Todai Chopper Spectrometer Project

March 18, 2009
T. J. Sato

The neutron science laboratory of the institute for solid state physics (ISSP-NSL) has been promoting the user program as well as its own research programs using the JRR-3 research reactor. On the other hand, there is an on-going effort to realize an intense spallation neutron source, J-PARC/MLF, just beside the reactor, which will be fully operational in very near future. On this occasion of achieving two different-type sources, ISSP-NSL has initiated construction of a chopper spectrometer at the spallation source, jointly with the neutron science laboratory of the high-energy accelerator research organization (KEK-KENS). The chopper spectrometer covers wide E-Q range with realizing high-energy-resolution and high-counting-rate modes by selecting suitable chopper devices for the different necessities. It is partly based on the HRC spectrometer of KEK-KENS, which has been under construction, and on VINS which has been planned by ISSP-NSL. In this workshop, we discuss the spectrometer specifications of the joint project, as well as possible scientific opportunities that can be enabled by its enlarged capability.