
Absorption and Gain Spectra of Optically

Excited Semiconductor Quantum Wires:

Effects of Coulomb Correlation and Screening

Ping Huai ∗ , Tetsuo Ogawa

CREST, JST and Department of Physics, Osaka University, Toyonaka, Osaka

560-0043, Japan

Abstract

We present a systematic study on optical spectra of one-dimensional semiconductor

quantum wires by solving the semiconductor Bloch equations. Many-body Coulomb

interactions are substantially enhanced by strong geometrical confinement in quan-

tum wire systems. Our theoretical calculation reveals that phase-space filling has

strong influence on the absorption spectra. Increasing carrier density bleaches the

exciton peak in low-density regime, and induces considerable optical gain in very

high density. Band-gap renormalization is partially cancelled by reduction of exciton

binding energy, which increases as the cross-section of quantum wire decrease.

Key words: Semiconductor Quantum Wire, Coulomb Interaction, Quantum

Confinement, Absorption and Gain Spectra, Semiconductor Bloch Equations,

Phase-Space Filling

Preprint submitted to Elsevier Science 26 July 2005



Many-body Coulomb interactions play a key role in optical properties of

highly-photoexcited low-dimensional semiconductors [1]. Under strong opti-

cal pumping, plasma screening of the Coulomb interaction causes significant

reduction of exciton binding energy. However it has been observed that the

exciton peak seems to be at a constant energy independent of carrier density

[2]. Such constant exciton peak arises from the cancellation between band-gap

renormalization (BGR) and reduction of binding energy [3].

When the dimensionality is lowered, the plasma screening of Coulomb interac-

tions is less effective because the field line passing through the barrier material

cannot be screened. Therefore the influence of static screening in quasi-one-

dimensional (1D) is considerably weaker than that in two/three dimensions,

and the effect of phase-space filling becomes more important in quantum wires

[4].

Because of strong quantum confinement, the Coulomb interactions in quantum

wires become quite complicated since electron/hole states are quantized in

the lateral direction forming multiple subbands. A few analytical results [5,6]

have been achieved for the Coulomb interactions in semiconductor quantum

wires. Most studies on optical properties of quantum wires are still based on

Coulomb potentials obtained by using roughly approximated envelop functions

or idealized geometries. Studies on exciton behaviors in quantum wire with

realistic geometry, e.g., T-shaped GaAs quantum wires [7], are often restricted

to zero carrier-density limit, i.e., the noninteracting exciton picture.
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There has been increasing experimental interest in 1D semiconductor devices,

which are believed to have better performance than three dimensional ones

due to concentration of density of states at the low energy regime. High-

quality T-shaped quantum wires [8] have been fabricated with highly devel-

oped nanofabrication techniques.

Thus an aim of this study is to investigate the optical properties of quantum

wires with realistic quantum confinement. Furthermore the effect of phase-

space filling is clarified by systematic studies on T-shaped, cylindrical, and

ribbon-like quantum wires. T-shaped quantum wires are discussed in this pa-

per as an example. The Coulomb potentials V i,j
k are evaluated by averaging

the 3D Coulomb interaction over the lateral envelop functions φi(x, y) and

φj(x, y):

V i,j
k =

2e2

ε0

+∞∫

−∞
dx1

+∞∫

−∞
dy1

+∞∫

−∞
dx2

+∞∫

−∞
dy2

|φi(x1, y1)|2K0

(
k
√

(x1 − x2)2 + (y1 − y2)2

)
|φj(x2, y2)|2. (1)

Here i and j are the indices of the subbands, k is the momentum in the wire

direction, and K0(x) is the modified Bessel function of the second kind. Typical

parameters for bulk GaAs are applied in the study: background dielectric

constant ε0 = 13.74, the effective mass of electron (hole) me = 0.0665m0,

mh = 0.457m0. We also introduce Bohr radius a0 = 12.5 nm and exciton

binding energy E0 = 4.2 meV of bulk GaAs as the unit of length and energy,

respectively.

The cross-section of a T-shaped quantum wire is shown in Fig. 1 (a). The

lateral confinement is assumed to be infinite while carrier is free in the z-

direction perpendicular to x − y plane. Thus the wavefunctions of electrons
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and holes are of the same form irrespective of their effective-mass difference.

To obtain single particle wavefunctions, we solve the Schrödinger equation

numerically taking into account the T-shaped confinement. Figure 1(b) shows

the probability of the ground state of a T-shaped quantum wire with Lx =

Ly = 0.5a0. The density is concentrated in the intersection of the two quantum

wells, and decays exponentially out of the center regime in both arm well and

stem well.

The Coulomb potentials is then calculated by using Eq. (1) for carriers in the

ground state (i = j = 1). Results are shown in Fig. 2 for four symmetric

T-shaped quantum wires with different cross-section size. As the lateral con-

finement becomes stronger, the Coulomb interaction is significantly enhanced.

In the long-wavelength limit ka0 → 0, the Coulomb potentials all approach

to the limit −2e2

ε0
ln(k) + const. It is easy to understand this logarithmic di-

vergence if one notices K0(x) → − ln(x) if x ¿ 1. In the short-wavelength

limit, the Coulomb potentials of T-shaped quantum wire approach to zero in

a manner different from those in 3D (∝ k−2) and 2D (∝ k−1).

We consider a two-band model coupled with electromagnetic field E(t) through

dipole interaction,

H =
∑

k

(ee,kα
†
kαk + eh,kβ

†
−kβ−k)

+
1

2

∑

k,k′,q 6=0

Vq(α
†
k+qα

†
k′−qαk′αk + β†k+qβ

†
k′−qβk′βk − 2α†k+qβ

†
k′−qβk′αk)

−∑

k

E(t)(dcvα
†
kβ

†
−k + H.c.) (2)

in which α†k(αk) and β†k(βk) are the creation (annihilation) operators of elec-

trons in a conduction band and holes in a valence band, respectively. The

momentum dependence is neglected in the optical dipole matrix element dcv.
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The energies of electron and hole are given by ee,k = ~2k2

2me
+E0

g and eh,k = ~2k2

2mh
,

in which E0
g is the energy gap without BGR. We apply the Coulomb potential

Vk(≡ V 11
k ) shown in Fig. 2, which are the same for electron-electron, hole-hole,

and electron-hole interactions due to infinite confinement.

Under the quasi-equilibrium condition, interband polarization Pk(t) follows

the semiconductor Bloch equations

[
i~

∂

∂t
− ẽe,k − ẽh,k

]
Pk(t) =− [1− fe,k − fh,k] Ωk(t) +

∂Pk(t)

∂t

∣∣∣∣∣
scatt

, (3)

ẽi,k = ei,k −
∑

k′ 6=k

Vs,|k−k′|fi,k′ , i = e, h

where ẽi,k is the renormalized kinetic energy of electron or hole. Here Vs,k =

Vk/ε(k, ω) is the screened potential. Quasi-equilibrium condition implies that

intraband relaxations are much faster than interband optical processes so that

carrier distributions have already relaxed to the thermal Fermi distributions

fe,k (fh,k). The generalized Rabi frequency is defined by

Ωk(t) = dcvE(t) +
∑

k′
Vs,|k−k′|Pk′(t). (4)

The scattering term in Eq. (3) is important in the low-density regime where

optical properties are strongly modified by the exciton-exciton scattering, biex-

citon formation, and dynamical screening. These many-body correlations are

clarified by complicated quantum approaches, e.g., dynamics-controlled trun-

cation or nonequilibrium Green’s function theory. In the high-density regime,

the Coulomb interaction becomes less important with respect to large kinetic

energies of carriers. The scattering terms can be neglected, and Hartree-Fock

approximation (HF) together with random phase approximation gives a good

description of coherent optical processes. It is worth to examine the validity
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of HF theory before more sophisticated theory is applied. At the HF level, the

Eq. (3) is reduced to the integral equation of the susceptibility function χk,

χk = χ0
k

(
1 +

1

dcv

∑

k′
Vs,|k−k′|χk′

)
, (5)

χ0
k =−dcv

1− fe,k − fh,k

~ω − ẽe,k − ẽh,k + iγ
, (6)

in which a phenomenological damping γ (= 0.05E0 in this study) is introduced

to take into account the spectra broadening due to carrier-carrier and carrier-

phonon scattering.

We solve Eq. (5) by numerical matrix inversion technique with discrete mo-

menta of Gaussian quadrature. Static screening of Coulomb interactions is

neglected in the calculation since it is less important than the phase-space

filling in the 1D system. The resulting complex susceptibility is given by

χ(ω) = 1
L

∑
k d?

cvχk.

Figure 3 shows the absorption and gain spectra (imaginary part of χ(ω)) for a

T-shaped wire with Lx = Ly = 0.5a0 at 80K. The free exciton peak (na0 = 0)

is at about 3.52 E0 as shown in the inset. Another weaker peak located at

0.4 E0 is ascribed to the first excited state (2s) of exciton. At finite density

na0 = 0.5, the exciton peak shows a small redshift (≈ 0.1E0) with respect to

the large BGR (≈ 3.4E0). In left-hand-side of Eq. (3), the BGR is included in

the diagonal part of polarization Pk(t) as
∑

k′ 6=k Vs,|k−k′|(fe,k′+fh,k′)Pk(t). This

term is compensated by the off-diagonal part in the right-hand-side (−1+fe,k+

fh,k)
∑

k′ Vs,|k−k′|Pk′(t) that contributes to the binding energy of the exciton.

Thus the BGR is partially cancelled by the binding energy reduction resulting

from increasing carrier density. In quasi 1D systems, the phase-space filling

(−1 + fe,k + fh,k) plays a more important role than the static screening.
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At higher density na0 = 0.7, the exciton peak is bleached while a build-up of

optical gain appears. That indicated that exciton absorption has been replaced

by the gain of exciton-hole-plasma. The gain is enhanced and broadened in

even higher density na0 = 0.9. The dependence of gain spectra on the cross-

section size is shown in Fig. 4 for density na0 = 0.7 at T = 80 K. Four

symmetric T-shaped quantum wires are investigated ranging from 0.5a0 to

1.25a0. As the size of the cross section decreases, the optical gain increases,

and the maximum of gain is shifted to the lower energy side.

In this paper, optical spectra are discussed for T-shaped quantum wires with

different size and carrier density. However, the energy difference is not taken

into account for pure GaAs arm well, slightly doped stem well and heavily

doped barriers. Further studies will be carried out for more realistic finite

confinement in GaAs T-shaped quantum wires. Those results together with

temperature-dependence will be discussed in details elsewhere.
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Fig. 1. (a) Cross section of T-shaped quantum wire. (b) Probability of single particle

confined in a quantum wire with Lx = Ly = 0.5a0.

Fig. 2. Coulomb potentials of T-shaped quantum wire with various cross-section

size.

Fig. 3. Absorption and gain spectra as a function of the carrier density of T-shaped

quantum wires with Lx = Ly = 0.5a0. Parameters are set as T = 80 K and

γ = 0.05E0.

Fig. 4. Gain spectra as a function of the cross-section size of T-shaped quantum

wire. Carrier density is na0 = 0.7. Parameters are set as T = 80 K and γ = 0.05E0.
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