「東京大学アウトステーション(SPring-8 BL07LSU)での物性研究の新展開」

トポロジカル物質のスピン分解ARPES

木村昭夫 広島大学大学院理学研究科

平成23年3月8日(火) 東京大学物性研究所 6階第一会議室

Topological insulators

Insulating bulk states

+ Odd number of gapless surface states

C. L. Kane and E. J. Mele, PRL (2005).

B. A. Bernevig and S. C. Zhang, PRL (2006).

Bi ultrathin film

Theory: S. Murakami, PRL (06).

Quantum Well: CdTe/HgTe/CdTe

Theory: B. A. Bernevig et al., Science (2006). Exp.: L. M. König et al., Science (2007).

$Bi_{0.9}Sb_{0.1}$

Theory: L. Fu et al., PRL (2007). Exp.: D. Hsieh et al., Nature (2008).

What are attractive points?

Massless electron

Forbidden backscattering

Surface electron transport

Dissipationless

Ultra-high mobility

Spin is 'locked' with momenta.

Angle-resolved photoelectron spectroscopy

Surface Dirac cones of Bi₂Y₃

Pioneering work of spin ARPES (Bi₂Se₃)

The observed spin pol. is as small as ±20% (<<100%).

Strong Rashba Type Spin Polarization of Bulk Continuum States of Bi(111)

A. Kimura et al., Phys. Rev.Lett. **105**, 076804 (2010).

Layer resolved charge and spin densities

16BL Bi slab

Suppression of bulk continuum signals

H. Pan et al., arXiv 1101.5615 (2011).

Topological surface state is well separated from the bulk state at hv=50eV (near Z point of BZ).

A high-degree of spin pol. (~75%) is observed.

Hiroshima Synchrotron Radiation Center

- **BL-1**
- Linear undulator
 hv = 26-300eV
- VG-Scienta R4000

 $\Delta E=4-6 \text{meV},$ $\Delta \theta=0.2 \circ -0.3 \circ$ BL-9A

- Helical undulator
- hv = 4-30 eV
- VG-Scienta R4000

Hexagonal Warped Iso-energy Surfaces of Bi₂Se₃

HISOR

K. Kuroda et al., PRL 105, 076802 (2010).

Predicted Fermi surface of Bi₂Se₃

General discussion on spin direction

Around $\overline{\Gamma}$ point

Time reversal invariance

$$E\left(\vec{k},\uparrow\right) = E\left(-\vec{k},\downarrow\right)$$

Bloch's theorem

$$E\left(\vec{k},\uparrow\right) = E\left(\vec{k} + \overline{G},\uparrow\right)$$

Time reversal invariance

No time reversal invariance for K point

TI / Si(111)-(1x1) : Spin-ARPES

Spin "stands up" at $\overline{\mathbf{K}}$ point.

TI / Si(111)-(1x1) : Spin-ARPES

Unwanted feature? S. Kim et. al., submitted.

 0.3 Å^{-1}

surface-bulk

M

scattering

New Family of 3D Topological Insulator

Ternary Chalcogenides: TI-V-VI₂

Discrepancy in the theoretical bands

H. Lin et al., Phys. Rev. Lett. (2010).

Why?

Theoretical k_{||} projected bulk band

VASP code by S. V. Eremeev (Tomsk State Univ.)

Quite sensitive to the small changes in geometry.

Photon energy dependence

No overlap with bulk continuum states.

トポロジカル物質のスピン分解ARPES

- ·3D スピン解析: 複雑なスピンテクスチャーを可視化
- ・放射光の利用:表面Dirac coneの抽出、バルクバンドの決定
- ・高い運動量分解能: δk < 0.5%*BZ
 - ・トポロジカル絶縁体の新物質探索
 a single, ideal, faster and well-isolated Dirac cone.

例:TIBiSe₂ I K. Kuroda et al., Phys. Rev. Lett. 105, 146801 (2010).

量子トポロジー物性、物質中の宇宙への深い理解