

ISSP-Workshop 「東京大学アウトステーション (SPring-8 BL07LSU) での物性研究の新展開」 2010年3月8日

# 高分解能ARPESによる物性研究: HiSORの現状と将来展望

### 広島大学放射光科学研究センター

島田賢也



### 文部科学省により認定された 全国共同利用・共同研究拠点(H22.4~) 「放射光物質物理学研究拠点」

#### 広島大学放射光科学研究センター



### 文部科学省により認定された 全国共同利用・共同研究拠点(H22.4~) 「放射光物質物理学研究拠点」





国内 34機関 海外 13機関 研究者実人数 163人 研究課題実施数 70件



# 2010年の主な研究成果

#### HiSOR BL-1, 9A, spin ARPES

IF > 7 Nature Commun. (1編)、Phys. Rev. Lett. (10編)

#### Highlights

APS Synopses2件APS Editors Suggestions2件NPG Asia Materials highlights1件Nature Japann Nature Communications highlights1件

※論文リストの詳細、海外からの申請課題の詳細、新聞報道等についてはウエブページ(http://www.hsrc.hiroshima-u.ac.jp/)を参照。



### 放射光を利用した物質科学研究 光電子分光(PES)







角度分解光電子分光





## "Single-band" system Cu(110)









### Many-body interactions in Solids characteristic energy scales



$$\Delta E = \frac{\hbar}{\tau} = \Gamma_{el-el} + \Gamma_{el-ph}$$



### Lineshape analyses of ARPES spectra Spectral function and self-energy



momentum



### Quasiparticle spectrum



Momentum

Self-energy correction

Real part:  $Re\Sigma$ Energy shift

Imaginary part:  $Im\Sigma$ Lifetime broadening



### Shockley states in Cu(111) High-resolution ARPES with low-energy SR

#### Fermi surface



hv=11.5 eV, 10 K  $\Delta E$ =4 meV,  $\Delta k$ =0.007 Å<sup>-1</sup>

#### Band dispersion near E<sub>F</sub>



•kink structure at ~25 meV •Debye temperature  $\Theta_D$ =343 K, k<sub>B</sub> $\Theta_D$ =29.5 meV (bulk)

 $\omega_0 = 433 \pm 5 \text{ meV}$ 



### Shockley states in Cu(111) Self-energy





### 高分解能

### 試料の多軸 方位制御

### 放射光の 偏光制御

## 直線偏光放射光を活用した 高分解能角度分解光電子分光装置











# **Dipole selection rule for transition**



Matrix Element

 $M_{fi} \equiv \langle f | \mathbf{A} \cdot \mathbf{p} | i \rangle \qquad |i\rangle$  : initial state

Symmetry with respect to the mirror plane

 $|f\rangle : \text{final state} \to \text{Even}$ (1) p-polarization  $\mathbf{A} \cdot \mathbf{p}$  : Even  $M_{fi} \begin{cases} \neq 0 & |i\rangle : \text{Even} \\ = 0 & |i\rangle : \text{Odd} \end{cases}$ (2) s-polarization  $\mathbf{A} \cdot \mathbf{p}$  : Odd  $M_{fi} \begin{cases} \neq 0 & |i\rangle : \text{Odd} \\ = 0 & |i\rangle : \text{Even} \end{cases}$ 

By switching linear polarization, we can select observable initial states.

![](_page_15_Picture_0.jpeg)

# Layered superconductor Sr<sub>2</sub>RuO<sub>4</sub>

Circular polarization (KEK-PF BL-28)

hv=65 eV

![](_page_15_Figure_4.jpeg)

H. Iwasawa et al. Phys. Rev. B 72 (2005) 104514.

![](_page_15_Figure_6.jpeg)

LDA calculation T. Oguchi, Phys. Rev. B 51 (1995) 1385.

![](_page_16_Picture_0.jpeg)

# Polarization dependent Fermi surface mapping $Sr_2RuO_4$ (HiSOR BL-1)

![](_page_16_Figure_2.jpeg)

Spectral weight strongly depends on the polarization

Iwasawa and Aiura et al. PRL (2010).

![](_page_17_Picture_0.jpeg)

# Band dispersion along $\Gamma M$ direction

### circular polarization (PF BL28)

![](_page_17_Figure_3.jpeg)

100

H. Iwasawa et al.
Phys. Rev. B 72 (2005)
104514.
Black lines indicate
calculated
energy-band dispersions.

p-polarization

 $\beta$  : zx (even)

![](_page_17_Figure_8.jpeg)

## s-polarization γ: xy(odd)

![](_page_17_Figure_10.jpeg)

Selective observation of the electronic states. An effective method to study multi-band systems

Self-energy analysis is now possible!

Iwasawa and Aiura et al. PRL (2010).

![](_page_18_Picture_0.jpeg)

## Wide electronic structure : $\Gamma M$ line

![](_page_18_Figure_2.jpeg)

• <u>Narrow 1D bands (α, β)</u> *W<sub>zx, yz</sub>* (LDA) ~ 1 eV ↓ *W<sub>zx, yz</sub>* (ARPES) ~ 0.3-0.4 eV • <u>Wide 2D band (y)</u>  $W_{xy}$  (LDA) ~ 3 eV  $\gtrsim$  $W_{xy}$  (ARPES) ~ 3 eV

![](_page_19_Picture_0.jpeg)

### FS dependent electron-boson interaction

#### Comparison between ARPES and model calculations

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

# Electron-phonon and electron-electron coupling parameters

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

平成23年8月~

### **HiSOR APPLE-Undulator Drawings**

![](_page_21_Figure_4.jpeg)

![](_page_21_Figure_5.jpeg)

![](_page_22_Picture_0.jpeg)

### 準周期APPLE型可変偏光アンジュレータ

性能

磁場周期長:78 mm 磁場周期数:23 全長:約1.8 m 最小ギャップ:22 mm 最小光子エネルギー:全てのモードで6 eV

左右円偏光、垂直·水平直線偏光

必要に応じて準周期と周期アンジュレータモードに変更可能

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

![](_page_22_Figure_8.jpeg)

# Hisor

## Spin ARPES @HiSOR BL-9B

Efficient SPin REsolved SpectroScopy **Observation (ESPRESSO) machine** Target Prep. ch. VLEED ch. 90° deflector SR light Main ch. SCIENTA R4000 Prep. ch. Xe lamp He lamp

![](_page_23_Picture_3.jpeg)

Analyzer (SCIENTA R4000)  $\Delta E$ =1 meV ( $E_p$ =2 eV) ,  $\Delta \theta$ =±0.1°

Manipulator (i-gonio)  $T_{min} \sim 10 \text{ K}$ polar & tilt rotatable (motor drive)

Spin (VLEED)

Transverse and Perpendicular

Light sources

Xe lamp (8.9 eV), He lamp (21.2 eV) SR from BL-9B (16-300 eV)

2D high resolution ARPES can be performed simultaneously. SR-FS mapping can be done with i-gonio manipulator Goal: SARPES with  $\Delta E < 10 \text{ meV}$  and  $\Delta \theta < \pm 0.5^{\circ}$ 

![](_page_23_Picture_11.jpeg)

![](_page_24_Picture_0.jpeg)

# First data by ESPRESSO-H

#### Spin resolution

![](_page_24_Figure_3.jpeg)

#### **Energy and Angular resolutions**

![](_page_24_Figure_5.jpeg)

Both high energy and angular resolutions

> $\Delta E < 8 \text{ meV}$  $\Delta\theta \sim \pm 0.375^{\circ}$

have been achieved.

![](_page_24_Figure_9.jpeg)

#### Bi(111)

![](_page_25_Picture_0.jpeg)

# Estimation of Figure of Merit

![](_page_25_Figure_2.jpeg)

宮本幸治、奥田太一

![](_page_26_Picture_0.jpeg)

HISOR

| Beam energy [MeV]                | 700                           |
|----------------------------------|-------------------------------|
| Circumference [m]                | 40.079                        |
| Betatron tune                    | 3.761, 2.846                  |
| Natural emittance [nmrad]        | 13.57                         |
| Momentum spread                  | 5.79e-04                      |
| Momentum compaction              | 0.0319                        |
| Bunch length [mm]                | 37.0                          |
| Harmonic number                  | 7                             |
| RF frequency [MHz]               | 52.4                          |
| Radiation dumping time<br>[msec] | L:11.44<br>H: 8.57<br>V:14.70 |
| Touschek lifetime [hour]         | 2.7                           |
| Straight sections                | 3.4 m × 4<br>2.0 m × 4        |

![](_page_26_Picture_3.jpeg)

**HiSOR-II** 

佐々木茂美、宮本篤

![](_page_27_Picture_0.jpeg)

# Hisor II

![](_page_27_Figure_2.jpeg)

Photon energy [eV]

佐々木茂美、宮本篤

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

佐々木茂美、宮本篤

小型光源リングの限界?

- 1. 到達可能なエミッタンスに限界がある(MAX III が世界最高レベル?)
- 2. アンジュレーターを挿入出来る直線部の数が限られている
- 3. 周長が短いため、シングルバンチ運転をしても、放射光パルス到達時間間 隔が短すぎる(例: 40 m のリングで 133 nsec, 7.5 MHz)

たとえば、ARTOF Photoelectron Spectroscopyの実験が出来ない

![](_page_28_Picture_7.jpeg)

新たな可能性の追求

![](_page_29_Picture_0.jpeg)

新しいアイデア

![](_page_29_Picture_2.jpeg)

佐々木茂美、宮本篤

 ビーム軌道がリングー周で閉じず、数回廻って閉じるような 構造はないか?

### 答はある!

たとえば、メビウスの輪

![](_page_29_Picture_7.jpeg)

あるいはトーラスの結び目

![](_page_29_Picture_9.jpeg)

実際のリングは水平の二次元平面に乗っているので、トーラスの結び目を平面に投影する。

![](_page_30_Picture_0.jpeg)

HiSOR II+ラティスの例

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_32_Picture_0.jpeg)

# 新しい小型高輝度VUV光源による 固体電子状態の超精密解析

![](_page_32_Picture_2.jpeg)

![](_page_33_Picture_0.jpeg)

Acknowledgment

# High-resolution ARPES at HiSOR

Masashi Arita (high-resolution ARPES at BL-9A)

Hideaki Iwasawa (high-resolution ARPES at BL-1)

Yoshihiro Aiura (Gonio for ARPES, high-resolution ARPES at BL-1&9A)

Jian Jiang, Hirokazu Hayashi (high-resolution ARPES at BL-1)

Akio Kimura, Kenta Kuroda (Topological insulators)

Akihiro Ino, Yosuke Nakashima (Fe-based superconductors)

Donglai Feng (Fe-based superconductors)

Koji Miyamoto, Taichi Okuda (spin-polarized ARPES)

- Shigemi Sasaki (Light Source), Atsushi Miyamoto (Light Source)
- Hirofumi Namatame (vice director of HiSOR)

Masaki Taniguchi (director of HiSOR)

![](_page_34_Picture_0.jpeg)