1337-WUKSHUP 2011. 3. 0

超高分解能軟X線発光分光装置の 性能と利用研究

東大院工 原田慈久

SPring-8 BL07LSU HORNET station

2009.10 コミッショニング 2010.7 分解能E/∆E>5000 2010.12 分解能E/∆E>10000 (N 1s) 2011.1~ ユーザー実験(G課題)開始

Acknowledgments

Applied Chemistry, University of Tokyo M. Kobayashi, H. Niwa, M. Saito, Y. Hiraike, H. Kiuchi and M. Oshima

Japan Synchrotron Radiation Research Institute (JASRI) Y. Senba, H. Ohashi, H. Kishimoto and T. Miura

RIKEN/SPring-8

Y. Horikawa, T. Tokushima and S. Shin

Budget NEDO & CREST

Observation of the electronic structure by SXES

Valence DOS (fluorescence)

Valence excitation (RSXES) — Element-specific dipole-forbidden transition ex) dd, ff-excitation etc..

hv hv hv hv Fe 3d DOS Fe dd excitation

Two-step process

 $I_{\rm XES}(h\nu\sigma,h\nu'\sigma') \propto$ $\sum_{m} |\langle i | T | m \rangle \langle m | T' | f \rangle|^2$

Trends in SXES

Ultra-high resolution SXES spectrometer

G. Ghiringhelli et al., Rev. Sci. Instrum. 77, 113108 (2006).

Energy resolution Standard: $E/\Delta E < 2000$ SAXES: $E/\Delta E > 10,000$

Ultra-high resolution \rightarrow crystal field splitting

G. Ghiringhelli et al., Eur. Phys. J. Special Topics 169, 199 (2009).

Ultra-high resolution \rightarrow Vibration (~0.1eV)

Ultra-high resolution ⊗ Q-dependence → magnetic excitation (~0.1eV)

M. Guarise et al., Phys. Rev. Lett. 105, 157006 (2011).

Concept of SPring-8 BL07LSU SXES station

Ultrahigh energy resolution

with in situ (air pressure) experiments

Commissioning & operation schedule

Summary for the basic concept of SXES spectrometer : SPring-8 BL17SU

1.high efficiency 2.high energy resolution ($E/\Delta E$ >2000)

Back-illuminated CCD (HR & HE)

#HR = High Resolution
#HE = High Efficiency

T. Tokushima et al., Rev. Sci. Instrum. 77, 063107 (2006).

検出器の位置分解能の問題(電荷雲広がり)

裏面照射型(Back-illuminated:BI)

Spectrometer size determines the resolution

Expected energy resolution increases almost linearly with the size of the spectrometer.

Ultra high resolution soft X-ray emission (HORNET)

Simulated energy resolution

\rightarrow applying coma-free mode

V.N. Strocov et al., J. Synchrotron Rad. 18, 134 (2011).

SX

HORNET XES station Focused image @ sample position

Highlight (2010年7月)

We have succeeded in achieving ultra-high resolution of SXES!!

Required improvements for ultrahigh resolution SXES

Hardware

- To eliminate vibration from vacuum pumping and CCD cooling
- To reduce the CCD noise to gain high S/N ratio
- To introduce camera systems for precise alignment of the sample
- To calculate precise CCD position for an appropriate aberration correction
- To increase photon flux

Software

• Bent correction of CCD images

カメラシステムによる試料の精密位置合わせ

Required improvements for ultrahigh resolution SXES

Hardware

- To eliminate vibration from vacuum pumping and CCD cooling
- To reduce the CCD noise to gain high S/N ratio
- To introduce camera systems for precise alignment of the sample
- To calculate precise CCD position for an appropriate aberration correction
- To increase photon flux

Software

• Bent correction of CCD images

HORNET集光条件探索プログラム

Developed by M. Kobayashi

Required improvements for ultrahigh resolution SXES

Hardware

- To eliminate vibration from vacuum pumping and CCD cooling
- To reduce the CCD noise to gain high S/N ratio
- To introduce camera systems for precise alignment of the sample
- To calculate precise CCD position for an appropriate aberration correction
- To increase photon flux

Software

Bent correction of CCD images

CCD imageの曲がりを考慮した積算

Initial data of E/AE > 10000 (2010年12月)

Concept of SPring-8 BL07LSU SXES station

Ultrahigh energy resolution

with in situ (air pressure) experiments

Commissioning & operation schedule

溶液・大気圧下試料の軟X線発光

溶液·大気圧下試料の軟X線発光(結果)

Sample

- •O2 gas (flow)
- •H₂O (flow)
- D₂O (flow)

X-ray emission spectroscopy

BL07LSU, SPring-8 Pressure: 3E-6 Pa 0 1s XES Incident Energy

resolution: ~5000

Concept of SPring-8 BL07LSU SXES station

Ultrahigh energy resolution

with in situ (air pressure) experiments

Commissioning & operation schedule

- ・触媒、腐食、酸化など大気圧下で起こる物理化学現象
- ・環境化学、界面化学
 - ・水を含む生体物質」

へのアプローチ →XESで真の大気圧分光へ!

High-pressure X-ray Photoelectron Spectroscopy

D.F. Ogletree et al., Rev. Sci. Instrum. 73 3872 (2002)

多段差圧排気による10 Torr環境下の 光電子分析(水の蒸気圧に相当)

最近はVG Scienta社も市販!

研究プロジェクト(2010~)

- 1. 燃料電池触媒のin situ状態分析
- 2. タンパク質のin situ状態分析
- 3. 拡張ナノ水、溶液解析

申請段階

4. コンビナトリアル薄膜の軟X線発光分光

- 1. 燃料電池触媒のin situ状態分析(S型:丹羽)
- 2. タンパク質のin situ状態分析(S型:小林、G型:東邦大大胡氏)
- 3. 拡張ナノ水、溶液解析(S型:丹羽、応化北森研)
- 4. 水素吸蔵合金(G型:筑波大関場氏)
- 5. イオン液体(G型:東京理科大金井氏)
- _6. Orbiton励起の観測(S型:小林、KEK、JAEA)

Summary

We have constructed *ultrahigh resolution* SXES station @BL07SU in SPring-8.

Estimated energy resolution up to $E/\Delta E \sim 10000$ by

- 1. Using extremely focused spot on the sample.
- 2. Moderately magnifying the spectrometer as well as applying two gratings optimized for 450 eV.
- 3. Applying simple adjustment for the coma-free operation.

We have obtained *ultrahigh resolution* (>8000) SXES spectra at energy range from 400 eV to 750 eV.

We have succeeded *in situ* SXES experiments with ultrahigh energy resolution.

Remaining problem is the XES intensity... (photon flux? detection efficiency?)

Concept of SPring-8 BL07LSU SXES station

Ultrahigh energy resolution

with in situ (air pressure) experiments

Commissioning & operation schedule

Thank you For your attention

