'11.2.17 ISSP-WS@ 本郷

In situ超高分解能軟X線発光分光 東大物性研原田慈久

Acknowledgments for the construction of HORNET

Applied Chemistry, University of Tokyo

M. Kobayashi, H. Niwa, M. Saito, Y. Hiraike, H. Kiuchi and M. Oshima

Japan Synchrotron Radiation Research Institute (JASRI) Y. Senba, H. Ohashi, H. Kishimoto and T. Miura

RIKEN/SPring-8

Y. Horikawa, T. Tokushima and S. Shin

軟X線発光分光

元素選択的に占有電子状態密度を与える手法

軟X線蛍光と共鳴軟X線散乱

・運動量を与える手法

軟X線蛍光と共鳴軟X線散乱

エネルギー幅は価電子
励起の寿命幅程度(~meV)

Soft X-ray emission

Resonant effects Liquids and wets 2000 1990 2010 2020 In situ reactions Time resolved **Ultra** high **Q**-dependence energy resolution **BL07LSU HORNET** 2012 2010 2009 2011 **BL07LSU Ultrahigh resolution** In situ experiments construction experiments

'09.10 BL07LSU commissioning

SXES station commissioning User operation since 2011.1

Extreme focusing by K-B type mirror

HORNET XES station Focused image @ sample position

Simulated energy resolution

\rightarrow applying coma-free mode

V.N. Strocov et al., J. Synchrotron Rad. 18, 134 (2011).

超高分解能化による微細構造観測

高輝度光源を用いた軟X線発光分光の研究

- ・強相関物質における素励起の直接観測とその成因の研究
- ・水溶性液体の電子状態とミクロ不均一性、固液/気液/液液 界面の相互作用、化学反応に関する研究
- 燃料電池触媒、次世代蓄電池材料、光触媒の反応メカニズム 解析のためのin situ電子状態分析手法の開発

Ultra-high resolution ⊗ Q-dependence → spinon & orbital excitations (~0.1eV)

Ti 2p RXES of TiOCI

S. Glawion et al., Phys. Rev. Lett. 107, 107402 (2011).

東北大	山田和芳教授
	平賀晴弘助教
京大	遠山貴己教授
関西学院大	水木純一郎教授
東大物性研	辛埴教授

 α =30°: Q=(0.05a*, 0.129b*) α =45°: Q=(0.00a*, 0.134b*) α =60°: Q=(-0.05a*, 0.129b*)

JPSJ 65, 1418 (1996).

高輝度光源を用いた軟X線発光分光の研究

- ・強相関物質における素励起の直接観測とその成因の研究
- ・ 水溶性液体の電子状態とミクロ不均一性、固液/気液/液液 界面の相互作用、化学反応に関する研究
- ・ 燃料電池触媒、次世代蓄電池材料、光触媒の反応メカニズム 解析のためのin situ電子状態分析手法の開発

水の水たる所以:水素結合

P. Ball, "*H*₂O: *The Biography of Water*" Newton Press (1999) 水素結合によって、方向性を持っ た結合が起こる。 →氷のダイアモンド構造の起源

電子状態で見る水と水素結合

SiN or SiC薄膜 (膜厚150nm)

水、水蒸気、氷の高分解能軟X線発光分光

液体の水の中に、はっきり区別できる2つの状態がある! 1b₁の位置が水素結合の非対称性を測る有効なマーカーとなる! T. Tokushima *et al.*, Chem. Phys. Lett **460**, 387 (2008).

界面、表面の水の相互作用 馬渡和真准教授

SPring-8 BL07LSU HORNET station

X線分析用疎水·親水膜

疎水・親水膜表面の水の軟X線発光分光

親水膜

全く変化が捉えられなかった。 → 膜表面のごく近傍(< 1nm)しか 水は変化しない…? それとも…?

X線照射破壊の影響を 防ぐための速い送液が 構造化を阻害している?

SiN or SiC薄膜 (膜厚150nm)

拡張ナノ空間の水(50nm-1µm)

T. Tsukahara *et al.*, Angew. Chem. Int. Ed. **46**, 1180 (2007).T. Tsukahara *et al.*, J. Phys. Chem. B **113**, 10808 (2009).

細胞と水

	Ion	Ionic radius	Surface charge density	Molar ionic volume	Intra- cellular	Extra- cellular	Water preference		
ſ	Ca ²⁺	100 pm	2.11	−28.9 cm ³	0.1 µ M	2.5 mM	High density		
ſ	Na ⁺	102 pm	1	−6.7 cm ³	10 mM	150 mM 🔇	High density		
	K ⁺	138 pm	0.56	+3.5 cm ³	159 mM	4 mM 🔇	Low density		

Martin Chaplin, http://www.lsbu.ac.uk/water/cell.html

Cation radius $Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$ Structure breaking Structure making イオン半径と水の構造 High density water 2K+ Na+, Ka+-ATPアーゼ 細胞外 ADP+P ATF 細胞内 Low density water

> イオン濃度勾配の生成要因 <u>イオンポンプ</u>と<u>水の構造化</u>

閉じ込められた水

Martin Chaplin, http://www.lsbu.ac.uk/water/cell.html

Extended nano-space (50nm~1000nm) in collaboration with

拡張ナノ空間に閉じ込められた水の軟X線発光

2011.4~

高輝度光源を用いた軟X線発光分光の研究

- ・強相関物質における素励起の直接観測とその成因の研究
- ・水溶性液体の電子状態とミクロ不均一性、固液/気液/液液 界面の相互作用、化学反応に関する研究

・ 燃料電池触媒、次世代蓄電池材料、光触媒の反応メカニズム 解析のための*in situ*電子状態分析手法の開発

ガス吸着実験

触媒塗布インク試料作製条件 Nafion 50μl, エタノール 50μl, 水 150μl, 触媒 5.0mg ドロップキャスト法により<u>4μl</u>をSi₃N₄薄膜上に塗布 =>触媒塗布層はPorousなため酸素吸着が観測可能。

電気化学In situセル

Highlight: XES measurements under potential In situ XES of LiMn₂O₄ cathode material of Liion battery

研究プロジェクト(2010~)

- 1. 燃料電池触媒のin situ状態分析(S型: 丹羽、NEDO)
- 2. 光触媒の界面電子状態(G型:東大物性研吉信先生)
- 3. 拡張ナノ水、溶液解析(S型: 丹羽、東大馬渡先生)
- 4. 水素吸蔵合金の水素吸蔵機構(G型:筑波大関場先生)
- 5. イオン液体の振動分光(G型:東京理科大金井先生)
- 6. Orbiton/magnon励起の観測(S型:KEK、JAEA、東北大 JASRI、京大、理研)
- 7. リチウムイオン電池のin situ状態分析(G型: 産総研朝倉先生)
- 8. ナノダイアモンドの遷移金属ドープ機構(G型:阪大森田先生)
- 9. 金属タンパク質のin situ状態分析(G型:小林、東邦大大胡先生)

方向性を持った水素結合とその帰結 エンタルピー(ΔH)とエントロピー(ΔS)の競合

$\Delta G = \Delta H - T \Delta S$

■氷の正四面体構造 density ordering エンタルピー(△H)支配

■水の歪んだ水素結合 bond ordering エントロピー(△S)支配

方向性を持った水素結合とその帰結

空間スケールは1nmオーダー?

Huang et al., Proc. Nat. Acad. Sci. 106, 15214 (2009).

$\Delta G = \Delta H - T \Delta S$

■氷の正四面体構造 density ordering エンタルピー(△H)支配

■水の歪んだ水素結合 bond ordering エントロピー(△S)支配