高分解能広立体角2次元光電子顕微分光器 (DELMA)の開発

松田博之^a, László Tóth^b, 後藤謙太郎^a, 松井文彦^a, 松下智裕^c, 橋本美絵^a, 酒井智香子^a, 北川 哲^a、森田 誠^a、大門 寬^a *°奈良先端科学技術大学院大学 (NAIST), ^bDebrecen大学, ^cJASRI-SPring-8*

松田巌、 山本達 (ISSP)

Conventional Two-dimensional photoelectron spectrometer (DIANA)
 New Photoelectron Emission Microscope for Stereophotography (DELMA)
 Application to graphene
 科研費 基盤(S) (20224007)

Outline

Two-dimensional photoelectron spectrometer <u>Di</u>splay-type Spherical Mirror <u>Ana</u>lyzer (DIANA)

Rits BL-7: LP-VUV 2D-ARPES Beam line

BL-7(Rits-SR center):

35 ~ 130 eV

Linearly Polarized light

Analyzer:

total resolution $\Delta E / E \sim 1\%$ angular resolution $\pm 0.5^{\circ}$ acceptance angle $\pm 50^{\circ}$ acquisition time ~ 5 min /

奈良先端科学技術大学院大学

t band dispersion of graphite in k_z directior

π bonding band

一奈良先端科学技術大学院大学

Three Dimensional Valence Band Dispersior

F. Matsui, Y. Hori, H. Miyatake, N. Suganuma, H. Daimon, H. Totsuka, K. Ogawa, T. Furukubo, H. Namba: Appl. Phys. Lett. **81** (2002) 2556.

念良先竭科学技術大学院大学

Valence band dispersion of graphite

F. Matsui, et al., Appl. Phys. Lett. **81** (2002) 2556.

Differential of π band: Group velocity of electrons ∝differential of band dispersion v_g = 1/ħ(dε(k)/dk)

念良先竭科学技術大学院大学

4 factors in photoelectron angular distribution

circularly polarized light synchrotron radiation

SPring-8: the largest SR ring in the world.

》 奈良龙端科学技術大学院大学

Forward focusing peak (FFP) in Photoelectron Intensity Angular Distribution (PIAD)

Rotation of the forward direction of the wave by orbital angular momentum

$$\Psi \propto \frac{e^{ikr}}{r} Y_{lm}(\theta, \phi)$$

$$\propto \frac{e^{ikr}}{r} \Theta_{lm}(\theta) e^{im\phi}$$
Phase $\exp[i(kr+m\phi)]$
Rotation
$$\Delta = \tan^{-1} \frac{m}{kR \sin^2 \theta} \cong \frac{m}{kR \sin^2 \theta}$$
Classical Angular momentum
(angular momentum)=(momentum) × (impact parameter)
$$m\hbar = \hbar k \times b$$

$$\Delta_{ll} = \sin^{-1} \frac{b}{R_{ll}} = \sin^{-1} \frac{m}{kR_{ll}}$$
H. Daimon, T. Nakatani, S. Imada, S. Suga, Y. Kagoshima, and T. Miyahara, Jpn. J. Appl. Phys. 32 Part 2, (1993) L1480.

Direction of FFP for normal and circularly-polarized light

Real-time direct observation of non-periodic 3D atomic arrangement

H. Daimon, Phys. Rev. Lett. 86, (2001) 2034

2π -steradian stereo photograph

Si(001)

[111]-3

3

In3d from InP(001)

B-dope Diamond(111)

Superconductor

2% E_K:600 eV

Atomic arrangement around 2% impurity could be clarified

$E_k 600 \text{ eV}$ hv 680.6 eV $Cu 3p_{3/2}$

fcc structure

Stereo movie of Cu

<u>Wide Acceptance Angle Electrostatic Lens (WAAEL)</u>

Energy analysis of DELMA by energy aperture

Aperture diameter, d [mm]

DELMA (Display-type ellipsoidal mesh analyzer)+HSA

Photoelectron Spectrum

Φ1.3mm aperture

Sample: TaS₂

Spectrum obtained by energy aperture

DELMA: Display-type Ellipsoidal Mesh Analyser

Diffraction mode

Diffraction Band structure

H. Daimon, H. Matsuda, L. Toth, F. Matsui, Surface Science, 601, 20, 4748

DELMA: Display-type Ellipsoidal Mesh Analyser

Imaging mode

H. Daimon, H. Matsuda, L. Toth, F. Matsui, Surface Science, 601, 20, 4748, (2007).

Off-Axes Point-source image

Point-source image

Point-source image

Test experiments using an electron gun

Ek=1000eV

Imaging mode

Sample: SUS316 woven mesh (#100, ϕ _wire=50 μ m)

250µm

Magnification ~10

Contrast aperture : the largest one (6mm)

Spatial resolution ~ 20 μm

Test experiments using an electron gun

Angular mode

Angle test device

Х

Ek=1000eV

Sample: single crystalline graphite h_V =990 eV Ek=700 eV (BL07LSU)

Vertical linear polarization

Photoelectron diffraction pattern

NAIST Daimon Group

奈良先端大・物質創成、JASRI/SPring-8^A 石井良、松井文彦、黄晋二、細川陽一郎、松下智裕^A、森田誠、 北川哲、橋村詩織、藤田將喜、安田馨、大門寛

DIANA

• $\pm 60^{\circ}$

Δ E=0.002E0

- 価電子帯光電子分光
 軌道解析(直線偏光)
- 内殻光電子回折
 原子立体写真(円偏光)
 原子層分解MCD
 光電子回折分光

DELMA

- ±45 ~ 60°
- Δ E=0.0002E0

R4000で高分解能

- 価電子帯光電子分光
 軌道解析 ⇒ 高分解能2D-ARPES
 内殻光電子回折
 原子立体写真
 原子層分解MCD
 光電子回折分光
 ・ 化学シフト分解
 光電子回折分光
- PEEM機能 ((x、y)∆30 µm)

拡大像、微小試料

● HAXPES機能(深さ(z)分解 △nm)

CrKα 6.4keV、 界面組成·電子状態

● 時間分解 (in future)

2D<mark>情報が一度</mark>に レンズシステムがTOF tube

1 D, 2D, 3D photoelectron spectroscopy

		電子状態	原子構造
		UPS $hv = 7 - 100 \text{ eV}$	XPS $hv > 100 \text{ eV}$
1D:角度積分		状態密度	化学シフト
$E_k = h v - E_B - \Phi$		1D(<i>E</i> _B)	1D(<i>R</i>)
<mark>2D:</mark> 角度分解		バンド分散	光電子回折·
(Scienta, DIANA)		$2D(k, E_B)$ $3D(k_x, k_y, (E_B, k_z))$	ホログラフィー 立体原子写真
			3D(<i>x, y, z</i>)
3D:	2D:PEEM	nano∆x,y+t	
空間・ 時間 分解		$3D(k_{x_{i}} k_{y_{i}} (E_{B}, k_{z}))$	
	3D:DELMA Stereo-PEEM	micro $\Delta x, y+z+t$, $3D(k_{x,})$	$k_{y,} E_{\rm B}$), 3D(x, y, z)