An *operando* soft x-ray emission study of LiMn₂O₄ with an aqueous electrolyte solution

Daisuke Asakura¹, Eiji Hosono¹, Hideharu Niwa^{2,3}, Hisao Kiuchi⁴, Jun Miyawaki^{2,3}, Yusuke Nanba¹, Haoshen Zhou¹, Masaharu Oshima³ and Yoshihisa Harada^{2,3}

¹Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology

> ²Institute for Solid State Physics, The University of Tokyo ³Synchrotron Radiation Research Organization, The University of Tokyo ⁴Department of Applied Chemistry, The University of Tokyo

Improvement of the energy density and power density of electrode materials for Li-ion batteries (LIBs) are highly important to further develop electric and hybrid-electric vehicles. In order to improve the performances, understanding the charge-discharge mechanisms of the electrode materials from a viewpoint of the electronic structure is indispensable. Soft x-ray spectroscopy, which directly reveals the 3*d* orbital of transition metals, has recently attracted much attention for the electronic-structure analyses of the electrode materials.

In this study we demonstrate *operando* soft x-ray emission spectroscopy (XES) for LiMn_2O_4 with an aqueous electrolyte solution. LiMn_2O_4 is a typical cathode material for LIB^1 and works as a cathode even for an aqueous electrolyte solution² as well as organic electrolyte solutions used for general LIB. The high-rate charge-discharge property for LiMn_2O_4 with an aqueous electrolyte solution is promising for large-scale energy storage, while a high voltage cannot be obtained for the aqueous LIBs because of the narrow voltage window for H₂O.

We developed an *in situ* cell consisting of the LiMn₂O₄ cathode, a Pt-wire counter electrode, Ag/AgCl reference electrode, and a 1 M LiNO₃/H₂O electrolyte solution by modifying the *in*

situ cell for fuel cell catalysts³. The *operando* XES experiments were carried out using ultrahigh-resolution XES spectrometer⁴ at BL07LSU of SPring-8. We selected 642 eV as the excitation energy in which the Mn³⁺ character should be enhanced for the Mn L_3 -edge absorption spectrum. The charge-discharge experiments were performed by cyclic voltammetry. The operando XES measurements were performed for the second charge-discharge cycle.

The Mn 2p-3d-2p resonant XES spectra revealed a clear difference between the pristine LiMn₂O₄ powder and open-circuit-voltage (OCV) state (i.e. before the second cycle) (Fig. 1). For the powder sample, the charge-transfer (CT) excitation below 637 eV is large and *dd*-excitation peaks appear from 637 to 641 eV. The configuration-interaction full-multiplet (CIFM) calculation^{5,6} (not shown) suggests

Fig. 1: *Operando* Mn 2p-3d-2p XES spectra for LiMn₂O₄.

that the Mn^{3+} and Mn^{4+} states coexist. In contrast, for the OCV state, the CT excitation becomes small and the *dd*-excitation peaks are modified. Thus, the first cycle affects the Mn 3*d* electronic structure and reduces the CT effect between the Mn 3*d* and O 2*p* orbitals. The change of *dd*-excitation peaks imply a modification of the crystal field particularly for the Mn³⁺ site related to Jahn-Teller effect.

In going to the charged state, the profile is substantially changed, indicating the redox reaction of $Mn^{3+} \leftrightarrow Mn^{4+}$ at the Mn^{3+} site due to the charge-discharge reactions (Li-ion extraction/insertion). The spectrum for the charged state has a large CT excitation relative to the *dd*-excitation peaks. The Mn^{4+} state should have a large CT effect. For the discharged state, the profile almost returned to that for the OCV state. A reversible redox reaction is confirmed.

In summary, *operando* XES measurements for LiMn_2O_4 with an aqueous electrolyte solution were performed to reveal the Mn 3*d* electronic-structure change during the charge-discharge process. The first cycle should modify the Mn 3*d* electronic structure especially for the crystal field. A large CT effect was found for the Mn⁴⁺ state. In future, the electronic-structure parameters for the Mn³⁺ and Mn⁴⁺ states will be determined accurately by using the CIFM calculation. The relationship between the electronic structure and electrochemical properties will also be discussed.

References

- [1] M. M. Thackeray, Prog. Solid St. Chem. 25, 1 (1997).
- [2] Z. Li et al., J. Alloy. Compd. 580, 592 (2013).
- [3] H. Niwa et al., Electrochem. Commun. 35, 57 (2013).
- [4] Y. Harada et al., Rev. Sci. Instrum. 83, 013116 (2012).
- [5] Y. Nanba, D. Asakura et al., J. Phys. Chem. C 116, 24896 (2012).
- [6] Y. Nanba, D. Asakura et al., Phys. Chem. Chem. Phys. 16, 7031 (2014).