Co 2p soft x-ray emission spectroscopy of LiCoO₂ using an electrochemical *in situ* cell

Daisuke Asakura¹, Eiji Hosono¹, Hideharu Niwa^{2,3}, Hisao Kiuchi⁴, Jun Miyawaki^{2,3}, Yusuke Nanba¹, Haoshen Zhou¹, Masaharu Oshima³ and Yoshihisa Harada^{2,3}

¹Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology

> ²Institute for Solid State Physics, The University of Tokyo ³Synchrotron Radiation Research Organization, The University of Tokyo ⁴Department of Applied Chemistry, The University of Tokyo

LiCoO₂ is one of the typical cathode materials for Li-ion battery. The charge-discharge capacity is 150 mAh/g when 0.5Li^+ ions are extracted/inserted from/into the LiCoO₂ host¹. In this charge process, the average valence of Co should change from Co³⁺ (for the open circuit voltage (OCV)) to Co^{3.5+} (for the charged state: Li_{0.5}CoO₂). There are many reports about this Co 3*d* electronic-structure change, e.g. by means of hard x-ray absorption spectroscopy at the Co *K* edge². In order to investigate the electronic-structure change in more detail, we developed an *operando* soft x-ray emission spectroscopy (XES) technique by improving the similar technique for fuel cell catalysts³.

LiCoO₂ powder was fabricated by a sol-gel method. The powder was mixed with acetylene black and PVDF in an NMP solution. The LiCoO₂ slurry was put on a Ti/Au-coated SiC membrane window and dried. An *in situ* cell consisting of the LiCoO₂ electrode on the SiC membrane window, a Li-metal counter electrode, and an organic electrolyte solution was developed. The *in situ* cell was assembled in a grove box filled with Ar gas. Cyclic voltammetry (CV) was employed for the charge experiment. The scan rate was set to 0.5 mV/s. XES measurements at the Co L_3 edge were performed at BL07LSU in SPring-8. An excitation energy of 780 eV corresponding to the main peak position of the Co L_3 -edge absorption spectrum was used for XES. The XES measurements were carried out using an

ultra-high-resolution XES spectrometer, HORNET⁴. The total energy resolution was set to $E/\Delta E = 2400$. All the XES measurements were performed at room temperature.

Figure 1 shows the Co 2p resonant XES (RXES) of LiCoO₂ for the pristine powder and the open-circuit voltage (OCV) before charge, and the charged states. The spectrum for the powder exhibits three fine *dd*-excitation peaks, charge-transfer (CT) excitation below 774 eV, and shoulder-like structures between them. The electron configuration should be Co³⁺ low-spin (LS) state (t_{2g}^{6}) according to the Co L_3 -edge absorption spectrum. However, the XES spectrum showed the discrete dd-excitation peaks which have not

Fig. 1. Operando Co 2p XES for LiCoO₂.

been seen in previous low-resolution XES results for LiCoO_2^5 . The present result implies that the t_{2g}^6 configuration in LiCoO₂ would likely be affected by some effects such as charge transfer and/or crystal field. In future, theoretical calculations will be performed.

For the OCV state, the S/N ratio is very poor while the profile should be partially similar to that for the powder. In going to the charged state, although the low S/N ratio remains, the *dd*-excitation peaks are changed. The peak at 778.7 eV is dramatically reduced and the peak at 778.1 eV is enhanced, implying that the Co^{3+} state would be partially oxidized to Co^{4+} . A similar change has been observed for the Co 2*p* ex situ XES study of LiNi_{0.65}Co_{0.25}Mn_{0.1}O₂⁶.

We also investigated the reason why the S/N ratio is much degraded for the *operando* measurements. An observation by a scanning electron microscopy revealed that the $LiCoO_2$ slurry partially flaked off from the membrane window after the *operando* XES measurements. The partial flaking possibly caused by the incident beam should degrade the S/N ratio.

In summary, we performed *operando* Co 2p XES for LiCoO₂ using the electrochemical *in situ* cell. Although some changes due to the charge reaction were observed for the XES spectra, the poor S/N ratio prevents us from detailed information of the Co 3d state. In the near future, the thin-film structure consisting of the membrane window, Ti/Au coating layer and the LiCoO₂ slurry will be improved to avoid the flaking.

References

- [1] K. Mizushima et al., Mater. Res. Bull. 15, 783, (1980).
- [2] I. Nakai et al., J. Power Sources 68, 536 (1996).
- [3] H. Niwa et al., Electrochem. Commun. 35, 57 (2013).
- [4] Y. Harada et al., Rev. Sci. Inst. 83, 013116 (2012).
- [5] V. R. Galakhov et al., Solid State Commun. 99, 221 (1996).
- [6] H. M. Hollmark et al., J. Electrochem. Soc. 157, A962 (2010).