Spatial analysis of lithium intercalation in spinel LiMn$_2$O$_4$ for lithium-ion battery by 3D-nanoESCA

N. Nagamura1,2, S. Ito1, K. Horiba1,2, T. Shinohara1, M. Oshima1,2, S. Nishimura3, A. Yamada3, N. Mizuno3

1Department of Applied Chemistry, The University of Tokyo
2Synchrotron Radiation Research Organization, The University of Tokyo
3Department of Chemical System Engineering, The University of Tokyo

Spinel-structured lithium manganese oxide (LiMn$_2$O$_4$)[1] has been extensively studied as a promising cathode material for lithium-ion batteries by virtue of its high voltage, low cost, and non-toxicity. The main problem for commercial use is irreversible capacity fading during cycling. It is important to understand the lithiation/delithiation process which is spatially inhomogeneous[2]. Nanoscale spectromicroscopic analysis is beneficial to investigate inhomogeneous lithium diffusion which causes local degradation of a lithium-ion battery after a number of charge cycles. In order to elucidate the lithium intercalation mechanism in spinel LiMn$_2$O$_4$ particles, we have performed nondestructive soft X-ray scanning photoelectron microscopy measurements using “3D-nanoESCA” (three-dimensional nano-scale spatially resolved electron spectroscopy for chemical analysis) [3], which has been installed at the University-of-Tokyo Materials Science Outstation Beamline (BL07LSU) at SPring-8.

LiMn$_2$O$_4$ samples were synthesized by solid-state reaction with precursors Li$_2$CO$_3$ and MnO$_2$. Li$_{1+\delta}$Mn$_2$O$_4$ samples were obtained by lithiation/delithiation of LiMn$_2$O$_4$ by chemical reduction/oxidation.

Figure 1 shows the XPS spectra of Li 1s and Mn 3p core-level photoemission peaks. The Li 1s core level has a binding energy of 56.8eV. This energy shift to higher binding energy from Li metal (54.7eV) indicates that lithium exists as Li$^+$ ions[4]. The peak which has larger intensity at 51.3 eV is attributed to the Mn 3p component.

Figure 2 presents a Li 1s and Mn 3p photoelectron intensity map with binding energy ranging from 45 eV to 69 eV shown in Fig. 1 for the Li$_{1+\delta}$Mn$_2$O$_4$ particle. The Li 1s peak intensity has a uniform distribution within the spatial resolution of 70 nm. Phase separation inside an individual particle, which is discussed in LiFePO$_4$[5], was not found, suggesting that lithium ions might be intercalated or deintercalated from the crystal surface instead of the particles edges.

The Li 1s and Mn 3p photoelectron intensity map for the Li$_{1+\delta}$Mn$_2$O$_4$ particles (Figure 3) suggests that the lithiation process has particle size dependence in the particle size of μm order.
Acknowledgement

This research is supported by the Japan Society for the Promotion of Science (JSPS) through its “FIRST Program”.

References

Fig. 3 Li 1s and Mn 3p core level photoelectron intensity map of Li1+δMn2O4 particles.