Charge-discharge mechanism of electrode materials for Li-ion batteries as seen via soft x-ray absorption/emission spectroscopy

Daisuke Asakura¹, Eiji Hosono¹, Yusuke Nanba¹, Hideharu Niwa², Hisao Kiuchi², Jun Miyawaki^{3,4}, Haoshen Zhou¹, Masaharu Oshima^{2,3} and Yoshihisa Harada^{3,4}

¹Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology

> ²Department of Applied Chemistry, The University of Tokyo ³Synchrotron Radiation Research Organization, The University of Tokyo ⁴Institute for Solid State Physics, The University of Tokyo

To improve the performance of electrode materials for Li-ion batteries, understanding the charge-discharge properties from a view point of electronic structure, i.e., revealing redox reaction of the transition-metal (TM) in the electrode materials during Li-ion insertion/extraction is highly important. Core-level photoemission spectroscopy and x-ray absorption spectroscopy at the TM K edge have widely been used to study the valence change of the electrode materials during the charge/discharge process. However, these methods are not so suitable to extract the information of TM 3d orbitals such as crystal-field splitting and charge-transfer (CT) effect.

In order to clarify the TM 3*d* electronic structure in detail, we utilized high-energy-resolution soft x-ray emission spectroscopy (XES) which can element-selectively reveal the TM 3*d* orbital below the Fermi level. In this study, the Mn 3*d* electronic structure of LiMn₂O₄ was investigated. Spinel-type LiMn₂O₄ is a typical cathode material for Li-ion batteries [1]. The average valence of Mn is expected to be Mn^{3.5+} at the initial state. At the charged state (Li-extracted Mn₂O₄), the Mn should be oxidized from Mn^{3.5+} to Mn⁴⁺.

 $LiMn_2O_4$ powder was fabricated by a sol-gel method. The cubic crystal structure was confirmed by x-ray diffraction. The electrochemical

experiments were carried out according to Ref. 2.

Soft x-ray absorption spectroscopy (XAS) and XES measurements at the Mn $L_{2,3}$ edges were performed at BL07LSU in SPring-8. The total electron-yield mode was employed for the XAS. The XES measurements were carried out using an ultra-high-resolution XES spectrometer, HORNET [3]. The energy resolution was set to $E/\Delta E = 3200$. All the XAS and XES measurements were performed at room temperature.

Figure 1 shows the Mn $L_{2,3}$ -edge XAS of LiMn₂O₄ for the initial, fully-charged, and discharged states. According to previous XAS studies for several Mn compounds and multiplet calculations [4], the multiplet structure of the initial-state spectrum suggests that Mn³⁺ and Mn⁴⁺ states coexist. In the L_3 region, the peaks at 640 and 642 eV were ascribed to the Mn³⁺ state and those at 640.8 and 643 eV were attributed to the Mn⁴⁺ state. At the charged state, the Mn³⁺ component decreased and the Mn⁴⁺ character was enhanced, suggesting the oxidation of Mn by charging.

Fig. 1: Mn $L_{2,3}$ -edge XAS for LiMn₂O₄ during charge-discharge.

The discharged-state XAS spectrum is almost the same as the initial-state one. Thus, a reversible redox reaction of $Mn^{3.5+}$ to Mn^{4+} was confirmed.

To separately discuss the Mn^{4+} state from Mn^{3+} one, we chose excitation energies (E_i) of 642 and 643 eV for XES since the Mn^{3+} and Mn^{4+} characters should be enhanced at 642 and 643 eV,

Fig. 2: Resonant XES for LiMn₂O₄ with $E_i = (a) 642$ and (b) 643 eV.

respectively. Figure 2 displays the resonant XES results with $E_i = 642$ and 643 eV. The dd-excitation peaks from 637 to 641.5 eV obviously changed during charge-discharge. Remarkably, the peak at 641 eV nearest to the elastic peak, which was observed for the initial state, disappeared by charging and emerged in the discharged-state spectrum. This result indicates that the peak at 641 eV is attributed to the Mn^{3+} state and that the electron near the Fermi level was removed by charging. The Mn⁴⁺ state should be dominant for the charged state. In the case of $E_i = 643$ eV (Fig. 2(b)), changes of the *dd*-excitation peaks between the initial and charged states were small compared to the case of $E_i = 642$ eV, which confirms that the Mn⁴⁺ character should be enhanced for the initial state with $E_i = 643$ eV. Furthermore, the CT excitation from 630 to 637 eV observed in the initial-state spectrum with $E_i = 642 \text{ eV}$ approached to the elastic peak by ~1.5 eV for the charged state, indicating the CT effects between the Mn^{3+} and Mn^{4+} states should be different. In addition, the discharged-state spectra did not absolutely reproduce the spectral shape of the initial state as for the region from 639.5 to 641.5 eV in the case of $E_i = 642$ eV and that from 640.5 to 642.5 eV for $E_i =$ 643 eV while the other parts were reproduced. The charge-discharge process should slightly affect the crystal field with a Jahn-Teller distortion on the Mn³⁺ site. The small changes of the Mn³⁺ state which were hardly observed in XAS could be detected by use of high-energy-resolution resonant XES.

In summary, XES measurements for $LiMn_2O_4$ were performed to reveal the Mn 3*d* electronic structure during charge-discharge process. We demonstrate that the Mn³⁺ and Mn⁴⁺ states are successfully distinguished by using high-energy-resolution resonant XES. In future, multiplet calculations will be performed to determine the electronic-structure parameters for both the Mn³⁺ and Mn⁴⁺ states.

References

- [1] M. M. Thackeray et al., Mater. Res. Bull. 18, 461, (1983).
- [2] M. Okubo et al., ACS Nano 4, 741 (2010).
- [3] Y. Harada et al., Rev. Sci. Inst. 83, 013116 (2012).
- [4] F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).