Ultra-Small-Angle Neutron Scattering at JRR3
SANS-J-II & PNO Spectrometers

S. Koizumi Ibaraki Univ. (2011/10 ~)

Y. Noda, Z. Yue, R. Kikuchi and D. Yamaguchi
Japan Atomic Energy Agency

Current Status of Ultra-Small-Angle Neutron Scattering at JRR-3, Tokai, Japan

Complimentary Use of
Double Crystal Type (PNO) & Pinhole Type (SANS-J-II)

Before 2005

![Diagram showing q range for PNO and SANS-J-II before 2005](image)
Current Status of Ultra-Small-Angle Neutron Scattering at JRR-3, Tokai, Japan

Complimentary Use of Pinhole Type (SANS-J-II) & Double Crystal Type (PNO)

SANS-J-II since 2005

C-3-2 (Cold Neutron)@JRR3 (10^8 /cm^2/sec)

Monochromator: ● Velocity Selector (Hungary)

\(\lambda = 6.0 \text{A} \) (4000 rpm), \(\Delta \lambda / \lambda = 8\text{-}13\%

Collimation: \(S_1 = 20 \) & \(S_2 = 8 \text{ mm} \phi \) (10^6 /cm^2/sec @sample)

Detector: ● ^3\text{He} Position Sensitive Detector (RISO, Denmark)

60cm Diameter & 5 mm resolution

Beam Stopper 40mm\phi

Camera Length: ● 1.3m ~10m

Available q is \(0.003 > q > 0.2 \ (0.4) \text{A}^{-1} \)
C-3-2 (Cold Neutron) @ JRR3 \((10^8 / \text{cm}^2/\text{sec})\)

SANS-J-II since 2005

ICNS 2005@ Sydney
Construction collaboration (J. Suzuki, H. Iwase & T. Oku)

Neutron lens
Biconcave & Spherical (MgF\(_2\))
designed by RISO
Radius of Curvature 25mm

30mm

70 pieces for 6.5 A
L\(_S\)=9.6m

Beam Stopper

3He Detector

40mm

Flagging

USANS (~ 10\(^{-4}\) A\(^{-1}\))

High resolution 2D detector

3He Detector
60 cm Size
5mm Resolution

Cross-Wired Position Sensitive Photomultiplier R3239

ZnS/\(^6\)LiF Scintillator (0.2mm thickness)

5 inch Size, 0.5 mm Resolution

Simultaneous Measurement Mode

Construction collaboration (J. Suzuki, H. Iwase & T. Oku)

ICNS 2005@ Sydney

2010, May
Current Status of Ultra-Small-Angle Neutron Scattering at JRR-3, Tokai, Japan

Complimentary Use of Pinhole Type (SANS-J-II) & Double Crystal Type (PNO)
Perfect silicon is transparent for neuron!

Measurement Time ~20 hours!

![Diagram showing tandem analyser Bonse-Hart USANS spectrometer with 2nd goniometer, rotation, detector shield, Si (111) sample, beam stop, and 3He detector.]

- **Sintered B₄C**
- **Incident neutron**
- **2nd goniometer**
- **Rotation**
- **Detector shield**
- **Si (111) Sample**
- **Beam stop**
- **3He Detector**

Perfect silicon is transparent for neuron!

![Diagram showing tandem optical setup with monochromator, sample, Si grooved perfect crystal, Off-Bragg, On-Bragg, Silicon grooved, Perfect Crystal, counter 1, counter 2, and 3rd goniometer.]

Measurement Efficiency: Double!

- **Standard measurement time**
 - **5~6 hours**

ICNS2005 Sydney

D. Yamaguchi and S. Koizumi

Phys. B, 385-386, 1190 (2006).
Two Spectrometers Shear Same Sample Environments!

Common Sample Holders

- 15x40 mm² (PNO)
 - λ=2Å
- 20° (SANS-J-II)
 - λ=6Å

Sample thickness: 0.5 ~ 10 mm

Common Auto Sample-changers

User Request
Better to be in a same beam hole!

On Bonse-Hart USANS (PNO)

Standard measurement time
5~6 hours
3~4 hours for focusing USANS
0.1~2 hours for pinhole SANS

Hierarchical Structure in Biology

II. USANS on Living Cells (Invivo)

Acetobactor Xylinium

Synthesizing extra cellular Cellulose

Collaboration with
T. Kondo, Y. Tomita.
Agriculture Center, Kyusyu Univ.

H. Iwase (Cross)
Acetobacter Xylinum, producing Cellulose

Growth Rate: $2.6\mu m/min$ (at 28C)

5000 glucose/min (100 glucose/sec)

Sub-Elementary Fibril

Microfibril

Ribbon

5μm

Sub-Elementary Fibril

Polymerization-induced Self-assembly

USANS Study on Hierarchical Structure of Microbial Cellulose:

cited from Chapter 5,
“Biosynthesis and Biodegradation of Cellulose”