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Preface

Two-dimensional systems are often of great interest in condensed matter
physics because of its dimensionality. Phenomena that are unique to two-
dimensional electron systems include quantum Hall effect, marginality of
Anderson localization, high-Tc superconductivity, which are all based on the
dimension two. Two-dimensional space is also peculiar in that a magnetic
field effectively becomes a scalar field with its perpendicular component.
This allows one to treat scalar potential and magnetic field on a similar
basis.

This study is an experimental attempt to explore the two-dimensional
electron system in modulated magnetic fields. Field modulation in-
cludes two-dimensinal as well as one-dimensional ones, with focus on
two-dimensional random modulation. The papar is organized as fol-
lows. In Chapter 1, theoretical and experimental backgrounds of the two-
dimensional system and modulated magnetic fields are reviewed. In Chapter
2, the design of our experiment and the procedure of sample preparation
and measurement is described. We present our experimental results and
discussion in Chapter 3. Concluding remarks are given in Chapter 4.

Part of the contents of this thesis is published as Reference [1].

Title page picture: Magnetoresistance of a two-dimensional electron
system in the presence of a random magnetic field and a scanning electron
micrograph of the sample V17303, used for the measurement.





iii

Contents

1 Introduction 1
1.1 Two-dimensional electron system . . . . . . . . . . . . . . . 1
1.2 One-dimensional modulation . . . . . . . . . . . . . . . . . . 3

1.2.1 Electric and magnetic Weiss oscillation . . . . . . . . 3
1.2.2 Resistivity from electron-electron scattering in zero-

mean modulation . . . . . . . . . . . . . . . . . . . . 7
1.3 Two-dimensional modulation . . . . . . . . . . . . . . . . . . 9
1.4 Random magnetic field . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Relevance to localization . . . . . . . . . . . . . . . . 11
1.4.2 Relevance to the composite fermion . . . . . . . . . . 12
1.4.3 Transport in random magnetic field . . . . . . . . . . 16

2 Design and Preparation of the Experimental System 19
2.1 Design of the system . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Patterned magnetic material . . . . . . . . . . . . . . 22
2.1.2 Superconducting meander coil . . . . . . . . . . . . . 25

2.2 Sample preparation and measurement setup . . . . . . . . . 26
2.3 Profiles of the RMF Samples . . . . . . . . . . . . . . . . . . 28

2.3.1 Lithographic pattern and magnetic field . . . . . . . 28
2.3.2 Description of the samples . . . . . . . . . . . . . . . 29

3 Experimental Results and Discussion 33
3.1 Resistance increase due to zero-mean RMF . . . . . . . . . . 34
3.2 Magnetoresistance in RMF . . . . . . . . . . . . . . . . . . . 36

3.2.1 Structures in the magnetoresistance . . . . . . . . . . 37
3.2.2 Shubnikov-de Haas oscillation . . . . . . . . . . . . . 42
3.2.3 Effect of randomness on 1D modulation . . . . . . . . 45
3.2.4 Remarks on anisotropy . . . . . . . . . . . . . . . . . 47

3.3 Temperature dependence of the resistivity in zero-mean MMF 48
3.3.1 1D modulation . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 2D modulations . . . . . . . . . . . . . . . . . . . . . 51



iv Contents

4 Conclusion 55



v

List of Symbols and
Abbreviations

e (> 0) Unit charge (electron charge is −e)
me Bare electron mass
m∗ Effective mass of electron

ne Carrier density
εF Fermi energy
kF Fermi wave number
vF = h̄kF/m

∗ Fermi group velocity

τ Transport scattering time
τtot Total scattering time
l = vFτ Mean free path
µ = eτ/m∗ Transport mobility

B Magnetic field
φ0 = h/e Flux quantum ( h/2e for superconductor )

lB =
√
h̄/eB Magnetic length

Rc = h̄kF/eB Cyclotron radius at the Fermi surface

r = (x, y) Spatial coordinate in the two-dimensional plane
B(r) = B̄ + δB(r) z-component of local magnetic field
B̄ Uniform component of the magnetic field
δB(r) Modulation component of the magnetic field

( 〈δB(r)〉 = 0 )



vi List of Symbols and Abbreviations

a Modulation period for one-dimensional modulation
K = 2π/a Modulation wave vector
ξB Field correlation length

( 〈δB(r)δB(r0)〉 ∝ exp[−|r − r0|/ξB] )

B‖ External in-plane field
B⊥ External perpendicular field
φ Azimuthal angle of B‖ from the x-axis

1D One-dimension[al]
2D Two-dimension[al]
2DES Two-dimensional electron system
MMF Modulated magnetic field
RMF Random magnetic field
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Chapter 1

Introduction

In this chapter, we overview the theoretical and experimental backgrounds
related to our topic. In Sec.1.1 we introduce the two-dimensional electron
system and its basic properties in a uniform magnetic field. In Sec.1.2
systems with field modulation (magnetic, as well as electric) in only one
direction are reviewed. These systems are often referred to as Weiss sys-
tem and their transport property are understood with good quantitative
accuracy. In Sec.1.3 we review the systems with two-dimensional (2D) field
modulation, not including random magnetic field. These systems are under-
stood far less than those with one-dimensional (1D) modulations. Detailed
description on the issues of the random magnetic field will appear later in
Sec.1.4.

1.1 Two-dimensional electron system

Two-dimensional electron system (2DES) at semiconductor interface, par-
ticularly that at GaAs/AlGaAs heterointerface, has been the stage of var-
ious experiment in condensed matter physics. This relies on the fact that
this system allows one to control or decorate an otherwise idealistic free
electron gas. 2D electrons at GaAs/AlGaAs interface have the energy dis-
persion ε(k) = h̄2k2/2m∗ and behave as free electrons with the effective
mass m∗ = 0.067me, where me is the bare electron mass. Recent develop-
ment of molecular beam epitaxy (MBE) has realized an 2DES with a high
mobility exceeding 103 m2/Vs, which correspond to a mean free path as
long as l ≈ 100 µm. Carrier density and Fermi wave number of a typical
GaAs/AlGaAs 2DES are ne ≈ 2×1015 m−2 and kF ≈ (10 nm)−1, respec-
tively.
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Motion of 2DEG in magnetic field As an introduction to the topic
of spatially modulated magnetic field, let us first overview the transport
properties of 2DES in a uniform magnetic field. The motion of an electron
in a magnetic field B is characterized with the cyclotron motion with the
cyclotron frequency ωc = eB/m∗. An electron occasionally experiences
a scattering at the scattering rate τ−1 and diffuses away from the initial
position. The cyclotron radius Rc = h̄kF/eB of an electron at Fermi surface
often comes into play when magnetotransport of a 2DES in modulated
structures are concerned. Another relevant length scale, especially in the

strong field limit, is the magnetic length lB =
√
h̄/eB, which is the unit

span of the quantized cyclotron motion.

Boltzmann’s equation of transport The semiclassical transport the-
ory is based on the Boltzmann equation for the electron distribution function
f(r,v, t)

{
v
∂f

∂r
+
1

m∗

(
−∂V (r)

∂r
− ev × B(r)

)
· ∂f
∂v

}
−

(
∂f

∂t

)
coll

=
eEext

m
· ∂f
∂v
. (1.1)

To consider the linear response to an external electric field Eext at T =
0, we may restrict the velocity to the Fermi velocity and introduce polar
coordinate v = vev = 〈v, φ〉, rewrite the equation for the deviation from
the Fermi distribution g(r, φ)δ(v − vF) = f(r,v)− f0 as

[
vFev · ∂

∂r
+ ωc(r)

∂

∂φ

]
g(r, φ)−

(
∂g

∂t

)
coll

=
−eEext

m∗ · ev, (1.2)

where ev = (cos φ, sinφ) is the unit vector parallel to v and ωc(r) =
eB(r)/m∗ is the cyclotron frequency corresponding to the magnetic field
B(r). There are several models for the collision term (∂g/∂t)coll but the
simple relaxation form (∂g/∂t)coll = −g/τ is often used. For a uniform sys-
tem, the above assumption leads straightforwardly to the well-known Drude
formula of conductivity σ and resistivity ρ

σ =
σ0

1 + (ωcτ)2

(
1 +ωcτ

−ωcτ 1

)
, σ0 =

nee
2τ

m∗ (1.3)

ρ = ρ0

(
1 −ωcτ

+ωcτ 1

)
, ρ0 = σ−1

0 . (1.4)
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Landau level and quantum Hall effect When the magnetic field be-
comes sufficiently strong (ωcτ ≥ 1), one has to take into account the quan-
tization of the cyclotron motion. The quantized energy levels are called
Landau levels. For a free electron without any scatterers, the energy eigen-
value and eigenfunction in the Landau gauge A(r) = (0, Bx, 0) are

εN,ky =
(
N +

1

2

)
h̄ωc , N = 0, 1, 2, 3, · · · (1.5)

ψN,ky(x, y) =
eikyy√
Ly

φN(x+ l2Bky), (1.6)

where φN(x) is the N -th eigenstate of a harmonic oscillator with frequency
ωc. In the presence of impurity potential, each Landau level broadens to a
width Γ 
 h̄/τ .

As the magnetic field becomes strong and the peak structure of the
Landau level’s density of state becomes eminent, the magnetoresistance of
the 2DES exhibits the Shubnikov-de Haas (SdH) oscillation periodic in B−1

with the period ∆(1/B)SdH = 2e/neh. In the strong field limit, the 2DES
enters the quantum Hall states where its resistance is expressed as

ρ =

(
0 − 1

ν
h
e2

+ 1
ν

h
e2 0

)
, (1.7)

with filling factor ν being an integer (integer quantum Hall effect : IQHE)
or odd-denominator fractional number (fractional quantum Hall effect :
FQHE).

1.2 One-dimensional modulation

1.2.1 Electric and magnetic Weiss oscillation

The first successful experimental studies on 2DES under spatially modu-
lated magnetic field have been reported in 1995. As these studies on 2DES
under one-dimensional (1D) modulated magnetic field (MMF) were strongly
inspired by the study on system with their electrostatic potential (electric
field) modulation counterpart, we first take a brief look at the potential
modulation and then come back to magnetic field modulation.

Electric Weiss oscillation In 1989, Weiss et al. [2, 3] and Winkler et
al. [4] have found a novel oscillation in magnetoresistance of a 2DES un-
der periodic electrostatic potential modulation with period a ≈ 500nm
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Figure 1.1: Left: Illustration of the sample structure for Weiss oscilla-
tion. Taken from Ref. [4]. Right: Observed magnetoresistance oscillation,
compared with calculation. Taken from Ref. [3].

(Fig.1.1). The novel oscillation was periodic in 1/B with a period different
from the Shubnikov-de Haas oscillation.

The explanation of this magnetoresistance oscillation was soon given as a
commensurability oscillation of the modulation period a with the cyclotron
radius Rc = h̄kF/eB = kFl

2
B of an electron at the Fermi surface. The

minima of ρxx occurs at the magnetic field values that satisfy

2Rc

a
= n− 1

4
, (1.8)

with integer n. This condition is obtained as follows. Let us approximate
the periodic potential with its first Fourier component

V (x) = δV cos(Kx). (1.9)

This potential lifts the degeneracy of the Landau level (1.5) and gives rise
to a ky-dependent dispersion of the energy eigenvalue, which leads to a
non-trivial drift velocity along the y-axis. The dispersion of the energy
eigenvalue and the drift velocity evaluated within first order perturbation
are

ε
(1)
N,ky

= 〈N, ky|V (x)|N, ky〉 = δV FN(u) cos(KX) (1.10)
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vy =
1

h̄

∂ε
(1)
N,ky

∂ky
=

KδV

eB
FN (u) sin(KX), (1.11)

respectively, where X = −l2Bky, u = K2l2B/2, and FN(u) = e
−u/2LN(u) with

LN (u) being the Laguerre polynomial of N -th order. This gives rise to ad-
ditional contribution to the yy-component of the conductivity proportional
to its r.m.s. value on the Fermi level:

∆σyy =
2e2τ

2πl2Bh̄ωc

〈(v̄drift
y )2〉Fermi, (1.12)

while its contribution to other components are small. Since σ2
xy � σxxσyy

in the magnetic field range where the oscillation is observed, ρxx =
σyy/(σxxσyy + σ2

xy) ≈ σyy/σ
2
xy, the minima of ρxx coincides with the minima

of σyy. One can understand that minima of the σyy occurs when the width
of the Landau subband is minimal. To obtain the condition (1.8), let us
replace the Landau index N at the Fermi level with εF/h̄ωc and employ the
asymptotic expression for LN (u) to get

FN (u)→
√

2

πKRc

cos
(
KRc − π

4

)
, (1.13)

which are also good approximations in this field range. The zeros of this
expression is expressed with (1.8).

An alternative explanation is given by Beenakker [5]. For a weak mod-
ulation, the motion of an electron can be approximated with a cyclotron
orbit, with the guiding center (X, Y ) drifting with the drift velocity

vdrift(r) =
E(r)× B

B2
(1.14)

at the local position r = (X+Rc cosωct, Y +Rc sinωct) along the cyclotron
orbit. The local electric field is (−e)Ex = −dV (x)/dx = KδV sin(Kx),
and therefore the drift velocity is along the y-axis. Its time average v̄drift

y is
obtained by integrating the electric field along the orbit,

v̄drift
y =

1

2πB

∫ 2π

0
dφKδV sin [K(X +Rc sinφ)]

=
KδV

eB
J0(KRc) sin(KX), (1.15)

where J0 is the Bessel function of the 0-th order. This gives the same
asymptotic form as (1.11), and leads to the same condition (1.8). Functional
form of magnetoresistance was studied in detail by Vasilopoulus and Peeters
[6, 7].
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Magnetic Weiss oscillation The magnetic field version of the Weiss
oscillation was soon examined by some theories [8–10], which predicted a
similar oscillation in the magnetoresistance for a 2DES with modulated
magnetic field (MMF) as for electrostatic potential modulation, but with
the condition of the resistance minima being

2Rc

a
= n+

1

4
, (1.16)

instead of (1.8). This condition can be obtained by considering a sinusoidal
MMF ∗

B(r) = B̄ + δB cos(Kx) (1.17)

and performing a similar calculation of energy dispersion and drift velocity,
to first order in δB:

ε
(1)
N,ky

= h̄δωcGN (u) cos(KX) (1.18)

vy =
1

h̄

∂ε
(1)
N,ky

∂ky

= Kl2Bδωc GN(u) cos(KX), (1.19)

where δωc = eδB/m∗. Asymptotic form for GN(u)

GN (u) = e−u/2

[
LN (u)

2
+ L1

N−1(u)

]

→ −kF

K

√
2

πKRc
sin

(
KRc − π

4

)
(1.20)

gives the condition (1.16).
Successful observations of the magnetic Weiss oscillation were reported

in 1995 by three different groups [11–13]. Fig.1.2 shows the experimental
results of Izawa et al. [11], who used nickel stripes to produce the periodic
field. The external magnetic field magnetizes the micropatterned nickel
stripes on the 2DES Hall bar and produces a MMF on top of a uniform
field.

Let us point out that the early studies on magnetic field modulation
encounterd an experimental obstacle that the metal strips on the 2DES
specimen produced a strain-induced potential modulation on the 2DES. In
the work cited earlier [11], a gate bias applied on the nickel stripe is used
to counteract this strain-induced potential. It has recently been shown that
the strain-induced potential is mostly due to the piezoelectric coupling, and
that it can be minimized by setting the direction of the modulation parallel
to the [100] crystallographic direction [14].

∗Throughout this thesis, we use the expression B(r) for the z-component of the total
magnetic field at r, B̄ = 〈B(r)〉 for its spatial average, and δB for the modulation
component with zero-average.



1.2. One-dimensional modulation 7

current

xxρ

2DES Hall barNi stripesx

y

zB

���

(b)

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

n=5

n=4
n=3 n=2 n=1

up

down

∆ρ
xx

/ρ
0

B (T)

Figure 1.2: (a) Schematic of the sample for 1D MMF. (b) Observed mag-
netoresistance. The arrows indicate the expected positions of the resistivity
minima. Taken from Ref. [11].

Low-field positive magnetoresistance Magnetic Weiss oscillation was
a phenomenon observed in a situation where uniform magnetic field B̄ as
well as modulated magnetic field δB(r) is present. δB(r) was treated as a
small perturbation to the Landau levels defined by B̄. The regime where
the modulated component δB(r) dominates the transport properties of the
2DES has recently become a topic of some studies.

The magnetoresistance of a magnetic Weiss system shows a clear positive
curve at the low field. A study on this low-field positive magnetoresistance
is performed by Nogaret et al [15]. The low-field transport was described in
terms of a so-called “snake orbit” that propagates in the y-direction along
zero-magnetic field contours (Fig.1.3). The positive magnetoresistance is
considered to arise from an enhanced diffusion in the y-direction, which
recalls the mechanism of Weiss oscillation but of different nature.

1.2.2 Resistivity from electron-electron scattering in
zero-mean modulation

When the external magnetic field is applied parallel to the 2D plane of
a sample used in the study of magnetic Weiss oscillation, the magnetic
material is magnetized parallel to the 2D plane and the fringing fields form
a periodic MMF with zero-mean (Fig.1.4). This gives rise to a profound
effect on the temperature dependence of 2DES resistivity.

The temperature dependence of the resistivity in semiconductor 2DES
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Figure 1.3: Snake orbits that travels along the B = 0 contour of the MMF.

M

����

||B

Figure 1.4: Schematic drawing of the magnetic field profile when the ex-
ternal field is applied parallel to the 2DES plane.

were studied intensively in the ‘80s. The low-temperature resistance of a
high-mobility 2DES is dominated by a residual resistivity from remote im-
purity scattering that is constant of the temperature T , plus a T -linear term
from acoustic phonon scattering [16,17]. Electron-electron (e-e) scattering,
which plays an essential role in the energy relaxation within an electron
system, does not contribute to resistivity because it preserves the total mo-
mentum in a translationally-invariant system.

When some kind of field modulation is introduced to such system, umk-
lapp process that alters the total momentum becomes possible and gives
rise to a resistivity component from e-e scattering. This issue is recently
addressed by Messica et al. [18] for electrostatic modulation, followed by
Overend et al. [19] and Kato et al. [20] for magnetic field modulaiton. They
created a zero-mean MMF by applying a in-plane external field to their 1D
MMF sample and observed a T 2-dependent resistivity component in the
2DES when MMF is present (Fig.1.5).

Theoretically, the temperature dependence of e-e scattering rate at the
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Figure 1.5: The resistivity of a 2DES in the presence (B0 = 52mT) and
absence (B0=0) of MMF. The former has a T 2-component which is not
found in the latter. Taken from Ref. [20].

Fermi level is given as

1

τee
∝ T 2 ln

(
εF

kBT

)
(1.21)

for two-dimension. We may expect the resistivity component from e-e umk-
lapp scattering to have the same temperature dependence. Recently Sasaki
et al. [21] have studied the conductivity of a 2DES in a specific case where
weak periodic magnetic field δB(r) = δB cos(Kx) is present. They yielded
the correction due to the periodic field as

−∆σ =
e2

h
(δωcτ)

2

√
k2

F − (K/2)2

K

+
π2

6

e2

h
(UD)2

(
kF

K

)2

(δωcτ)
2 τ

h̄

(kBT )
2

εF
, (1.22)

where U is the strength of the e-e interaction and D is the density of states
at the Fermi level. The first term is constant of T and the second term gives
the T 2-contribution. Kato et al. [20] have compared their experimental data
with this expression and obtained a reasonable agreement.

1.3 Two-dimensional modulation

Behavior of 2DES in 2D modulation is understood far less than its 1D
counterpart, because of its complexity. The simplest 2D modulation consists
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of two Fourier components and in many cases two-wave approximation does
not describe experimental systems well. In addition, analytical treatment
of 1D modulation imposed on uniform background field was specifically
facilitated by taking the Landau gauge, in which unperturbed wave fuction
can be taken plane wave in one direction.

The energy spectrum of electron in 2D potential modulatino shows an
intricate fractal structure called Hofstadter’s butterfly [22]. Some theoritical
studies on 2D MMF discusses the energy spectra in such systems and show
that there are similar fractal structure also for magnetic modulations [23–
25]. However observation of such structures in semiconductor 2DES has not
been reported so far because they are easily smeared out by temperature
and the lifetime broadening of the electron.

Yoshida et al. [26] have studied numerically the magnetotransport of
2DES in a 2D MMF with classical billiard model and Kubo-type formula.
They observed a commensurability peak in the magnetoresistance, which
they attributed to the occurence of runaway orbits that skips between the
periodic modulation (Fig.1.6).

Figure 1.6: Typical three trajectories in 2D MMF imposed on uniform
background field. Pinned, chaotic, and runaway orbits. Taken from Ref.
[26].

To our knowledge, there is only a single experimental study published
so far on semiconductor 2DES with 2D MMF. Ye et al. [27] deposited an
2D array of ferromagnetic dysprosium dots with period a = 500 nm on a
2DES Hallbar. The magnetoresistance showed a commensurability minima
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at the positions expected for 1D MMF with the period a = 500 nm. They
did not mention any behavior in the electron transport that reflects the
dimensionality of the modulation.

1.4 Random magnetic field

Properties of 2DES in random magnetic field (RMF) has attracted particu-
lar interests among spatially modulated structures because of its relevance
to some fundamental problems in the solid state physics. Those include the
problem of localization [28–30], composite fermion model of half-filled Lan-
dau level [31–33], and gauge field theory of high-Tc superconductors [34].
Here we view some of these aspects of 2DES in RMF and theory of trasport
in such system.

1.4.1 Relevance to localization

It is generally believed by now that, in two-dimension, all non-interacting
electron states in random potentials are localized and 2DES are insulators
in the limit of large system size and low temperature. This localization is
of quantum nature in that the interference between time-reversal symmet-
ric paths plays an essential role. Therefore, the localization is destroyed
with uniform magnetic field which breaks the time-reversal symmetry. In
contrast to the case of random potential, localization of 2DES in random
magnetic field still remains a controversial issue. Many theoritical and nu-
merical studies have been done on this problem.

Random flux model Among the models of RMF, random flux tight-
binding model is probably the most intensively studied because of its sim-
plicity. It is a modification of tight-binding model that the transfer integral
t between lattice sites are twisted by random Peierls’ phase θi,j (Fig.1.7).
The Hamiltonian of this system can be written as

H =
∑

i

εi +
∑
〈i,j〉

teiθi,jc†icj + h.c., (1.23)

where 〈i, j〉 indicates the nearest neighbors. The flux threading a plaquette
is expressed as

φijkl =
1

2π

h

e

∑
ijkl

θi,j . (1.24)
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jiite ,θ

lkji ,,,φ

Figure 1.7: Schematic of the random flux model. Each transfer matrix
element t is twisted by a random phase factor θi,j .

The model is first considered by Lee and Fisher [28], and reexamined by a
number of authors. Some of them concluded that all states are localized [29],
but others argued that there exist some delocalized state(s) at the band
center [30]. The extremely long localization length near the band center
makes it difficult to draw a definite conclusion from the calculation in finite
system.

Though the model deals with an RMF with much shorter correlation
length and large modulation amplitude than our study, experiments may
give a clue to this long-standing problem in the future.

1.4.2 Relevance to the composite fermion

Fractional quantum Hall effect A 2DES in a strong magnetic field
enters quantum Hall (QH) states around some specific magnetic field values
where the Landau level filling factor ν = neh/eB takes integer (intger QH
effect : IQHE) or odd-denominator fractional (fractional QH effect : FQHE)
values. The Hall resistivity ρxy takes the quantized value

ρxy =
h

e2
· 1
ν
, (1.25)

and the diagonal resistivity ρxx approaches zero.
While IQHE can be explained with a single electron picture that the

Fermi level enters a mobility gap between Landau levels, FQHE is a many-
body effect in its nature, as characterized by the Laughlin’s many-body wave
function [35]. There were some difficulty in constructing an appropriate
wave function for hieralhical FQH states such as ν = n/(2n ± 1). There
was also an enigma concerning the filling factor ν = 1/2, where ρxx shows a
minimum like a QHE but was not likely to be a QH state because the Hall
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resistivity ρxy does not form a plateau and the ν = 1/2 minimum in ρxx

does not develop towards the low temperature unlike the QH minima.

Electron Magnetic
Flux

Composite
Fermion

Figure 1.8: Schematic illustration of composite fermion. The CF feels the
statistical field that cancels the external field at Half filling.

Composite fermion picture The composite fermion (CF) theory pro-
posed by Jain [36] gave large clue to these problems. In this theory, the
2DES in strong magnetic field is described in terms of a fictutious particle
named composite fermion, which consists of an electron and two magnetic
flux quanta φ0 = h/e (Fig.1.8). As a result of the flux attatchment, a CF
feels a fictitious “magnetic” field

b = ∇× a = −2φ0ne (1.26)

proportional to the electron density ne in addition to the external field B.
When treated in the mean-field approximation, the the FQH states of the
primary sequence ν = n/(2n± 1) are mapped to IQH states ±n of the CF,
and the ν = 1/2 state is mapped to the zero-field state of the CF.

Composite Fermion and RMF Despite the elegant mapping of the
CF theory, there remain some subtle differences between the states around
ν = 1/2 and the true B = 0. One is the positive magnetoresistance as
exemplified by the experiment by Jiang et al. (Fig.1.9 [37]), and another is
the enhancement of the effective mass m∗

CF argued experimentally by Du et
al. [38, 39] and theoritically by Halperin, Lee, and Read [40].

These differences are considered to occur from the physics omitted in the
mean-field approximation – the fluctuation of the effective magnetic field,
which means random magnetic field. It stems from the fluctuation of the
local electron density ne(r). At ν = 1/2, the effective magnetic field felt by
a CF is

Beff(r) = B + b(r) = 2 (ne − ne(r))φ0 = −2δne(r)φ0, (1.27)
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Figure 1.9: Hall- and longitudinal resistivity of a very-high mobility 2DES
around ν = 1/2. ρxx shows a minimum with characteristic structure that
does not depend on the temperature as other FQH minima. Taken from
Ref. [37]

where δne(r) = ne(r) − ne is the local fluctuation of the electron density
from its average value.

We should note that there are two kinds of RMF present in CF systems.
Kalmeyer and Zhang [31] discussed that the random impurity potential
induces a static inhomogeniety in the local electron density δne(r) and leads
to a static RMF δB(r). The positive magnetoresistance around ν = 1/2
is due to this effective RMF in their argument. The other source of the
fluctuation is the electron correlation. According to Halperin, Lee, and
Read [40], this term leads to a effective mass renormalization that diverges
toward the Fermi level at ν = 1/2.

Here let us call them “static” and “dynamical” RMF, respectively. The
RMF realized in our experiment contains the former component only.
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Figure 1.10: Effective CF mass as determined from the temperature de-
pendence of the Shubnikov-de Haas oscillations (top and left), and energy
gap as determined from activation energy measurements (bottom and right).
The evaluated CF effective mass is about an order larger than the GaAs
band mass m∗ ≈ 0.067me and seems to diverge toward the ν = 1/2. Taken
from Ref. [39].
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1.4.3 Transport in random magnetic field

Despite the large interest in the issue, actual transport properties of 2DES
in RMF – how the resistivity behaves with introduction of RMF – is yet to
be established. One reason is the wide range of situations depending on the
five characteristic scales that come into the problem: The amplitude |δB|
and the correlation length ξB of the RMF, and the mean free path l, the
average cyclotron radius R̄c = h̄kF/eB̄, and the Fermi wavelength 2π/kF of
the electron.

There are theoretical studies discussing the transport of 2DES in RMF
in terms of quantum weak localization effect [41,42], and classical motion in
the absence of potential scattering [43, 44], focusing on different regimes of
the five parameters. Here we follow the theory by Hedeg̊ard and Smith [45]
which is consider to cover the experimental situation of our study.

The theory is based on semiclassical Boltzmann equation (1.2) and ex-
plicitly disregards weak localization effects. The RMF is treated as a ran-
dom driving force while the ordinary impurity scattering is included in
the collision term in the simple relaxation form. Putting the RMF in the
driving-force term is justified when the correlation length ξB of the RMF is
much greater than the Fermi wavelength: kFξB � 1. The equation for the
deviation g(r, φ) from the Fermi distribution reads

{
vFev · ∂

∂r
+ [ω̄c + δωc(r)]

∂

∂φ
+
1

τ

}
g(r, φ) =

−eEext

m∗ · ev, (1.28)

where ev = (cosφ, sinφ), ω̄c = eB̄/m∗, and δωc(r) = eδB(r)/m∗. This can
be rewritten as an operator equation

Dg ≡ (D0 +W)g = χ (1.29)

with the definitions

D0 = i

{
vFev · ∂

∂r
+ ω̄c

∂

∂φ
+
1

τ

}
(1.30)

W = iδωc(r)
∂

∂φ
(1.31)

χ(r, φ) = i
−eEext

m∗ · ev. (1.32)

The strategy is to find the Green function G for D. Then we get

g(r, φ) =
∫

dr′2dφ′G(r, φ; r′, φ′)χ(r′, φ′) (1.33)
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and the current density

j(r) = −2nee
1

2π

∫ 2π

0
dφevg(r, φ). (1.34)

The Green function G is calculated with perturbative expansion from the
Green function G0 for D0 in a manner similar to that for quantum me-
chanical Green function. The deviation from the Drude conductivity (1.4)
is expressed in terms of “self energy” Σ of the averaged Green function
G = (G−1

0 + Σ)−1. Σ = 〈WG0W〉, evaluated to the second order in W
contains the correlation function of the RMF

CB(R) = 〈δB(r)δB(r +R)〉 (1.35)

which reflects the nature of the RMF.
The theory is applied to the experiments by Geim et al. [46], where the

field modulation was caused by flux tubes. They assumed the correlation
function of the form

CB(R) = δB2 exp

(
− R2

2ξ2
B

)
(1.36)

and calculated the magnetoresistance. They also obtained the expression
for the magnetoresistance

∆ρxx

ρ0
xx

=
(
π

2

)1/2
(
ξb

l

)
(δωcτ)

2 coth
(

π

ω̄cτ

)
(1.37)

for moderate fields and the limit l/ξB � 1. The overall shape of the mag-
netoresistance shown in Fig.1.11 is determined by the ratio x = l/ξB. The
magnetoresistance crosses over from negative to positive as the correlation
length ξB becomes much shorter then the mean free path l.
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Figure 1.11: Relative change in longitudinal resistance of a 2DES in RMF
with the correlation function (1.36). Parameters are ne = 4×1015 m−2 and
δB = 10 mT. l and ξB are varied such that lξB = (8.1µm)2 to keep the
curves on the same scale. Taken from Ref. [45]
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Chapter 2

Design and Preparation of the
Experimental System

The experimental procedure consists of sample preparation and measure-
ment. However the most important step in the course of the experiment is
the design of the whole system including the sample and the measurement
setup. In Sec.2.1, we first discuss the design of the sample, that is, how
to impose the modulated magnetic field onto the 2DES. Next in Sec.2.2,
the preparation of the samples from raw 2DES wafers and the experimental
setup for the measurement of magnetotransport is explained.

2.1 Design of the system

There are several methods to impose a modulated field on a 2DES. On de-
signing such experimental systems, we have to take the following conditions
into account.

1. The characteristic length scales relevant to the transport in 2DES
are the mean free path l = vFτ = 1 ∼ 103 µm, Fermi wavelength
λF = 2π/kF ≈ 50 nm, and the cyclotron radius Rc = kFl

2
B ≈ 70 nm

(at B = 1 T) of an electron at the Fermi level.

2. The 2DES is at the GaAs/GaAlAs heterointerface which is located
typically about 100 nm away from the surface of the wafer.

3. For a clear discussion on the effect of the field modulation, it is essen-
tial to separate the uniform background component B̄ and the pure
modulation component δB(r) of the magnetic field.
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Let us take a brief look at the past experimental methods to produce
modulated magnetic field (MMF). Geim et al. [46] deposited a uniform film
of type-II superconductor on the top of 2DES wafer. An applied magnetic
field creates the mixed state in the superconductor above the lower critical
field Bc1 and penetrates as distributed magnetic flux (vortices) with char-
acteristic diameter close to the field penetration depth. The flux tubes tend
to distributed randomly instead of forming the so-called Abrikosov lattice
due to the inhomogeneity of the film (Fig.2.1 A). Smith et al. used small
lead grains ranging from few to 80 microns and are randomly ditributed
on the surface of the 2DES wafer [47]. The lead grains, which are type-I
superconductor for these grain size, expells the magnetic field below critical
field through the Meissner effect. The problem in using Meissner effect or
mixed state of superconductor as a source of MMF is that they can produce
only a small field modulation amplitude not more than the lower critical
field.

Mancoff et al. [48, 49] attatched a macroscopic (300µm × 1.5 mm ×
200µm) slab of neodymium-iron-boron (NdFeB) ferromagnet on top of the
2DES Hall bar (Fig.2.1 C,D). The surface roughness with a lateral length
scale of about 20 µm produces an inhomogeniety in the magnetic field felt
by the 2DES. The field modulation amplitude is estimated to be as large
as ≈100 mT. Rushforth et al. deposited on 2DES wafer a CoPd multilayer,
which form a maze-like pattern of domain at certain points in the magne-
tization loop. The amplitude of the MMF prepared with these methods is
fairly large but in these experiments the external field applied perpendicular
to the 2D plane contributes to MMF as well as uniform background, which
makes the analysis difficult.

Gusev et al. [50] took a unique approach. They prepared a nonplaner
2DES grown on a prepatterned substrate (Fig.2.1 B). By applying an exter-
nal in-plane field, they were able to introduce an effective MMF. Since the
external field is applied parallel to the 2D plane in this case, the average
of the effective MMF is kept zero. However the mobility of the 2DES was
greatly diminished from an ordinary 2DES, due to the difficulity in epitaxial
growth process.

Probably the most popular method to produce MMF is to decorate
the surface of a 2DES wafer with a pattened ferromagnets using microfab-
rication techniques. Ye [27, 51] deposited dysprosium dots regularly and
randomly distributed on a 2DES Hall bar.

Patterned ferromagnets, when combined with a cross-coil system that
allows one to impose two components of external field independently, en-
ables us a systematic study particularly for 1D modulations. Kato et al. [20]
have used this system to study electron-electron scattering process in 2DES
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A. B.

C. D.

Figure 2.1: A. Schematic of 2DES-superconductor hybrid system. Taken
from Ref. [46]. B. Plane-view scanning electron micrograph of a dimpled
sample used in Ref. [50]. C. (a) Schematic, (b) Topview, and (c) Optical
micrograph of the sample used in Refs [48] and [49]. D. (a) Longitudinal
resistance vs external field measured under NdFeB magnet, compared with
control sample. Strong positive magnetoresistance exists only for the cov-
ered case. The inset shows the Hall resistance. (b) for high-field scan, (c)
at 77 K. Taken from Ref. [48].



22 Chapter 2. Design and Preparation of the Experimental System

M

ext
||B

φ

φcosM
x

y

����

Figure 2.2: Schematic of patterned magnet for 1D MMF. The MMF am-
plitude δB can be controlled via the azimuthal angle φ of the in-plane field
B‖.

under 1D MMF. A strong external magnetic field B‖ applied in-plane, with
the angle φ from the modulation wave vector aligns the magnetization of
the ferromagnetic stripes on the 2DES Hall bar and produces a zero-mean
MMF (Fig.2.2). Because the system is uniform along the y-axis, the y-
component My of the magnetization does not produce fringing field that
threads the 2DES Hall bar. Thus the amplitude of the MMF is determined
by the x-component as

|δB| ∝ Mx = |M | cosφ, (2.1)

where M is the magnetization of the ferromagnet, which is well saturated
at this external field. This means that |δB| can be controlled via the az-
imuthal angle φ of B‖ while the uniform field component B̄ can be imposed
independently with the other solenoid.

We should note that this method was particularly successful for 1D
modulated system. For 2D modulations, we have to develop yet another
scheme to gain a full control of B̄ and |δB|. We have attempted two methods
to achieve this, which is described in the following.

2.1.1 Patterned magnetic material

For most measurements, patterned ferromagnets are still a useful method
for 2D modulations too. As long as cross-coil system is available, one can
prepare a MMF of fixed amplitude by the in-plane field B‖ and measure, for
example, the magnetoresistance with respect to uniform field B̄. However
one encounters a difficulty when he attempts to control the amplitude |δB| of
the modulation, because the rotation of B‖ now merely changes the pattern
of the MMF in a complicated manner instead of the simple relation (2.1).
For this purpose, we sought for another material whose magnetization is
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1. not hysteretic so that the magnetization can be known as a single-
valued function of the external field, so that |δB| can be controlled via
the strength of B‖.

2. as large as ferromagnetic metals, in order to create a strong enough
MMF on the 2DES plane.

Candidate material may be compounds of rare-earth metals such as Dy, Gd,
which have large local magnetic moments at the inner shell. Since elemen-
tary substance of those 4f metals become ferromagnetic at low temperature
and exhibit wide hysteresis loops, we attempted to kill the ferromagnetic
order by introducing impurities. After some trial and error, it turned out
that alloy of dysprosium with copper (DyCu) fulfills the above requirement.

Patterned film of DyCu is prepared by co-sputtering dysprosium with
copper as shown in Fig.2.3. Copper content of the alloy can be varied with
the number of 1 cm×1 cm copper chips placed on the 100 mmφ dysprosium
target.

Figure 2.3: Inside the sputtering chamber when Dy (circle target) is co-
sputtered with Cu (square chips). The sputtering ion beam is emitted
from the source on the upper right in the picture towards the target at the
bottom, evaporating the metal to the sample on the upper left.

An optical micrograph of one of the samples used in the study is shown
in Fig.2.4. Figure 2.5 shows the magnetization curve of some DyCu films
measured with a SQUID magnetometer, and compared with that of pure
Dy film. The hysteresis loop of Dy is largely reduced by small amount of
Cu and is almost closed at 4.2K for DyCu prepared with 30 Cu chips on the
Dy target. The difference can be seen in the resistance of the 2DES. Fig.2.6
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Figure 2.4: An optical micrograph of a sample for random magnetic field.
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Figure 2.5: Magnetization of Dy (left) and DyCu (right). The large hys-
teresis loop of Dy is reduced by addition of Cu.
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Figure 2.6: Resistance of 2DES with MMF by Co (left) and DyCu (right).
The hysteresis of the magnetic layer is reflected to the resistivity of the
2DES.
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shows the resistance of 2DES with patternd DyCu compared with a similar
sample with cobalt. Most samples measured in this study use patterned Co
or DyCu film for the MMF.

2.1.2 Superconducting meander coil

Another way to induce a magnetic field is to drive a current. Microscopic
meander coil may be used to produce a MMF controllable with an external
current. Considering that a current of 10 mA induces a magnetic field of
4 mT at a distance of 0.5 µm, it is possible to produce a MMF with an
amplitude of few mT by driving a current through a micron-scale meander
coil as shown in Fig.2.7. Ginzburg-Landau theory gives the critical current
density for thin superconducting wire as

Jc =
cHc

3
√
6πλ

, (2.2)

where Hc is the critical field and λ is the penetration depth. This may
exceed 100 mA/µm2 for some niobium compounds such as NbTi, Nb3Sn,
or NbN, indicating the possibility to produce MMF with superconducting
meander coils. These superconductors listed above survive the external
magnetic field for transport mearurements.

Figure 2.7: Optical micrograph of a NbTi random meander coil

We have made some microscopic wires and meander coils of NbTi using
e-beam lithography and co-sputtering technique similar to those mentioned
in the last section, and measured the critical current. However the measured
critical current remained far less than the expected value as far as we did.
The large critical current probably require a fine tuning of the composition
of the film and an optimized condition of evaporation.
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2.2 Sample preparation and measurement

setup

Sample Preparation The 2DES used in the present study are
GaAs/GaAlAs single heterojunctions grown with molecular beam epitaxy
(MBE). We have used two different 2DES wafers, which are referred to as
VG173, VG27 and VG76. The specific parameters that characterize each
2DES wafer are shown in Table 2.1. First, the 2DES wafer is patterned

Table 2.1: 2DES wafers used in this study. Carrier density ne and mobility
µ are often subject to change upon fabrication process.

wafer number carrier density ne mobility µ depth of 2DES

VG173 2.5×1015 m−2 156 m2/Vs 90 nm
VG27 1.8×1015 m−2 40 m2/Vs 90 nm
VG76 2.1×1015 m−2 138 m2/Vs 274 nm

into a Hall bar-shaped mesa by means of photolithography and wet etch-
ing. Ohmic contact electrodes for transport measurements are created with
another photolithographic process followed by evaporation of nickel and
gold-germanium (AuGe) alloy and annealing at 430◦C. Next, a thin, uni-
form gate electrode of gold covering the Hall bar is fabricated by standard
electron-beam lithography, evaporation, and lift-off. The typical thickness
of the gate electrode is 20 nm. Finally the magnetic material that produces
the MMF is patterned with another e-beam lithography, evaporation, and
lift-off process.

6T–1T cross coil superconducting magnet Measurements of magne-
totransport were carried out in a cross-coil superconducting magnet system
which consists of a 6T split coil and a 1T homemade solenoid (Fig.2.9 left).
Samples were mounted on the stage of the rotating stage of the sample
holder sketched in Fig.2.9 right. For most measurements in this study, the
sample was aligned horizontally so that the 6T split coil serves as the mag-
net to impose the in-plane field B‖, and the 1T solenoid, the perpendicular
field B⊥. With the stage rotation, the sample can be aligned to the split
magnet within 0.5 degree. The small misalignment can be further compen-
sated with the vertical solenoid, reducing the effective misalignment to 0.01
degree. The azimuthal angle φ between the in-plane field B‖ and the Hall
bar was varied by turning the sample holder about its vertical axis.
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Figure 2.8: Schematic of electron beam lithography and lift-off process.
Bi-layer resist is used to make an undercut structure and ease the lift-off.

Figure 2.9: Schematic illustration of 6T-1T cross coil superconducting
magnet (left) and the sample holder (right).
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Transport properties of the 2DES were measured using a standard low-
frequency ac technique.

2.3 Profiles of the RMF Samples

In this section, the profiles of the lithographic pattern and the expected
magnetic field of the RMF samples that appear in Chap.3 are described.
Electronic and geometric properties of each sample follow in Sec.2.3.2.

2.3.1 Lithographic pattern and magnetic field
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Figure 2.10: (a) lihtographic pattern and (b) expected magnetic field
profile of the RMF sample V2717. The unit of the scales of the axes are
micron. Red and blue areas in (b) correspond to positive and negative field,
respectively.

Fig.2.10 shows the lihtographic pattern and the expected magnetic field
profile of the RMF sample V2717. The lithographic pattern consists of
rectangular dots randomly displaced within 0.75 µm from square lattice
sites with the lattice constant ā = 0.5 µm. Size of each dot is varied
randomly within a certain range, 0.35± 0.1 µm for this particular sample.
Parameters for other samples are summarized in Sec.2.3.2.

The characteristic length scale, or the correlation length ξB of the RMF
is taken equal to the lattice constant ā of the underlying lattice. The ampli-

tude |δB| of the RMF is determined as √2 times the r.m.s. value
√
〈δB(r)2〉

of the magnetic field profile calculated as follows.
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Figure 2.11: The local magnetic field at the 2DES is calculated by inte-
grating the contribution from the magnetic layer.

The lithographic pattern, thickness of the magnetic layer, and the dis-
tance of the 2DES plane are taken into account. If the patterned magnetic
layer is magnetized uniformly at m, the z-component of the magnetic field
at (r, z) = (x, y, z) is the sum of the contribution from the whole layer:

B(x, y, z) =
∫
pattern

dx′dy′
∫
thickness

dz′
1

4π

{
−m

R3
+ 3

(m · R)R
R5

}
, (2.3)

whereR = (x−x′, y−y′, z−z′) and R = |R|. For the evaluation of the RMF
amplitude |δB|, the patterned magnetic layer is assumed to be magnetized
along the x-axis and the z-compoment of the field at the position of the
2DES is used.

The value of the magnetization are taken 1803 mT for cobalt, 946 mT for
NiFe, 461 mT and 625 mT for the two DyCu sample, which are estimated
from SQUID measurement. The estimated |δB| are just a rough estimate
due to the possible errors in the values of the magnetization and the dis-
crepancy of the actual pattern of the magnetic film from the lithographical
pattern.

2.3.2 Description of the samples

This section summarizes the electronic and geometrical parameters of the
samples presented in this thesis. The correlation length ξB and the ampli-
tude |δB| characterize the RMF. The carrier density ne and the mobility µ
when the RMF is off characterize the 2DES at the gate voltage applied in
the experiment. The items in the geometry are orderd from the top layer
of the sample specimen to the 2DES wafer. T , W , and L stand for thick-
ness, width, and length, respectively. ā is the average spacing between the
magnetic dots.
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V17303 (from wafer VG173)

ξB = 1µm, |δB| = 37 mT
ne = 2.11×1015 m−2, µ = 153 m2/Vs (Vg = 0 mV)
Geometry
DyCu islands T 185 nm 0.325 µm× 0.8 µm, ā = 1 µm
Au gate T 18 nm
2DES Hall bar Depth 90 nm W 20 µm× L 60 µm

V2717 (from wafer VG27)

ξB = 0.5µm, |δB| = 86 mT
ne = 1.833×1015 m−2, µ = 39.8 m2/Vs (Vg = 0 mV)
ne = 3.30×1015 m−2, µ = 47.4 m2/Vs (Vg = +200 mV)
Geometry
Co islands T 110 nm 0.35 µm× 0.35 µm, ā = 0.5 µm
Au gate T 20 nm
2DES Hall bar Depth 90 nm W 29 µm× L 130 µm

V2707 (from wafer VG27)

ξB = 1µm, |δB| = 88 mT
ne = 1.991×1015 m−2, µ = 32.2 m2/Vs (Vg = +150 mV)
Geometry
Co islands T 110 nm 0.7 µm× 0.7 µm, ā = 1 µm
Au gate T 18 nm
2DES Hall bar Depth 90 nm W 29 µm× L 130 µm

V2710 (from wafer VG27)

ξB = 1µm, |δB| = 50 mT
ne = 1.956×1015 m−2, µ = 34.3 m2/Vs (Vg = +700 mV)
Geometry
Co islands T 54 nm 0.7 µm× 0.7 µm, ā = 1 µm
Au gate T 18 nm
2DES Hall bar Depth 90 nm W 29 µm× L 130 µm
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V2709 (from wafer VG27)

ξB = 1µm, |δB| = 27 mT
ne = 1.887×1015 m−2, µ = 37.2 m2/Vs (Vg = +300 mV)
Geometry
Co islands T 27 nm 0.7 µm× 0.7 µm, ā = 1 µm
Au gate T 18 nm
2DES Hall bar Depth 90 nm W 29 µm× L 130 µm

V2703 (from wafer VG27)

ξB = 0.5µm, |δB| = 36 mT
ne = 2.37×1015 m−2, µ = 42.6 m2/Vs (Vg = 0 mV)
Geometry
DyCu islands T 185 nm 0.25 µm× 0.25 µm, ā = 0.5 µm
Au gate T 18 nm
2DES Hall bar Depth 90 nm W 20 µm× L 60 µm

V7605 (from wafer VG76)

ξB = 1µm, |δB| = 25 mT
ne = 2.56×1015 m−2, µ = 200 m2/Vs (Vg = +300 mV)
Geometry
Au gate T 60 nm
NiFe islands T 225 nm 0.5 µm× 0.5 µm, ā = 1 µm
2DES Hall bar Depth 274 nm W 33 µm× L 100 µm
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Chapter 3

Experimental Results and
Discussion

We first discuss the experiments on 2D random magnetic field (RMF). The
samples were prepared by depositing DyCu alloy or cobalt on the 2DES
Hall bar in a random pattern as described in Sec.2.3.

We should note that the random magnetic field component δB(r), which
is controlled via the in-plane external fieldB‖, is dependent on the azimuthal
angle of B‖ in the xy-plane, and is not isotropic because each magnetic
particle with an in-plane magnetic moment imposes on the 2DES a pair of
positive and negative field modulation around itself, aligned with others.
However the realized MMF is considered to have the feature of the RMF
in that it does not have a particular modulation wave vector by which it
is characterized. For the experimental results presented in this section, the
in-plane external field B‖ is oriented parallel to the current J .

2DEG HallbarMicropatterned DyCu

Random Field ControlB//

Bz

Figure 3.1: Schematic of patterned magnet for random magnetic field
(RMF).



34 Chapter 3. Experimental Results and Discussion

3.1 Resistance increase due to zero-mean

RMF

Let us start with a RMF with zero mean, i.e. δB �= 0 with B̄ = 0. As
discussed in Chap.2, this configuration is realized by applying the external
magnetic field B‖ parallel to the 2DES plane. 2DES with random DyCu
islands is used for this purpose in order to study the dependence of the
resistance on the amplitude of the RMF, which will be denoted by |δB|.
It is for the DyCu with no hysteresis loop that the magnetization M , and
therefore also |δB|, can be expressed as a single valued function of B‖. Figure
3.2 (a) shows the magnetization curve of the uniform DyCu film deposited at
the same time as that on the measured 2DES Hall bar. The magnetization
grows rapidly at low field and reaches close to its saturation value at 2∼3
T.

Figure 3.2 (b) shows the resistivity of the 2DES with the randomly
patterned DyCu islands, as a function of the in-plane field, together with the
data for a control sample without the DyCu. The resistance of the former
shows a considerably larger increase than the control sample as the RMF
is turned on. This increase can be attributed to the increased scattering of
the electrons by the RMF. There is also a small increase in the resistance of
the control sample at higher fields. This is probably due to the modification
of the wave function in the direction perpendicular to the 2D plane caused
by the in-plane field. Although dependences of its magnitude on carrier
density, mobility, or azimuthal direction of the in-plane field, is unknown,
it is negligibly small in the low-field region below 3 T, where the amplitude
of the RMF grows rapidly.

Figure 3.3 (a) shows the results of similar measurements with different
gate voltages Vg on the uniform gate under the patterned DyCu on the
2DES Hall bar. To examine the RMF-amplitude dependence of the 2DES
resistivity, the resistance increase is replotted as a function of the magneti-
zation of the DyCu (Fig.3.3(b)). In order to compare the results for different
values of Vg, the relative change ∆ρ/ρ0 is plotted. Though ∆ρ appear to
be larger for larger negative Vg, those rescaled with ρ0 fall under the same
scale. Setting aside the high-field region where magnetoresistance due to B‖
itself becomes distinct, ∆ρ/ρ0 is proportional to M2 for all gate voltages.
We did not find singular behavior that may reflect the change in the sym-
metry class with the introduction of the RMF. This result corroborates the
simple expectation that the additional scattering rate caused by the RMF
is proportional to the square of the RMF amplitude.
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Figure 3.2: (a) Magnetization of the DyCu film (b) Resistance of the
2DES with and without the ramdomly patterned DyCu, as functions of the
in-plane external field.
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3.2 Magnetoresistance in RMF

Fixing the random field component δB(r) with the strong in-plane external
field B‖, we can independently apply a uniform perpendicular field B̄ with
the inner solenoid. Figure 3.4 shows the resistivity of the 2DES as a function
of B̄ for five different temperatures. The magnetoresistance in the presence
of RMF has some distinctive features. It draws a large positive curve, with a
shoulder-like structure indicated by the arrows, until the onset of Shubnikov-
de Haas (SdH) oscillation, and reaches almost twice the value at B̄ = 0. It
has a smaller downward cusp structure indicated by the circle near B̄ = 0,
which is commonly observed in different samples. The low-field structure
have only small temperature dependence while the SdH oscillation have a
strong temperature dependence in this temperature range. These features
of the magnetoresistance are reminiscent of those in a plain 2DEG around
the half-filled Landau level state. The magnetoresistance curves in Figures
3.4 and 1.9 (page 14) actually look very similar to each other, except for the
scales of the axes. The fact that the magnetoresistance of the two systems
look similar provides a strong support to the mapping between the two. To
further discuss the relevance of the RMF system to the CF system, we should
consider the nature of the structures in these positive magnetoresistance.
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Figure 3.4: Magnetoresistance with respect to the uniform field compo-
nent, at different temperatures. The circle and the arrows indicate the
“center cusp” and the “broad shoulders”, respectively.
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3.2.1 Structures in the magnetoresistance

The robustness to the temperature compared to the SdH oscillation suggests
that the structures in the magnetoresistance are of semiclassical nature.
Hedeg̊ard et al.’s semiclassical theory [45] introduced in Sec.1.4.3 seems to
cover the situation realized in our experiment. They show the calculated
magnetoresistance in fixed RMF for some representative values of ne, δB,
l, and ξB. The behavior of the magnetoresistance curve depends largely on
the ratio l/ξB of the mean free path to the RMF correlation length. The
result for l/ξB = 5 and 10, the values close to l/ξB in our systems, also show
positive magnetoresistance with a peculiar structure at low-field (Fig.1.11).
Its magnitude and range is smaller than our data probably because the
modulation amplitude is much weaker. However we cannot determine if
this explains our experimental data since they did not address the physical
picture of these behavior of the magnetoresistance. Here, let us consider
the nature of the structures seen in our experiment by analogy to those in
1D periodic systems.

The downward cusp structure at B̄ = 0 is also observed in 1D periodic
systems, and considered to be associated to the snake orbits (Fig.3.5 (a)).
We can imagine similar orbits, also for RMF, that meander between positive
and negative regions of local field B(r) and drift along B(r) = 0 contour
as in Fig.3.5 (b). Mirlin et al. [43] argue that such orbits play an essential
role in the low-field transport in the presence of RMF, though they assume
the limit of extremely long mean free path.

(a) (b)

Figure 3.5: Snake orbits for (a) 1D periodic and (b) random magnetic
fields.

At the intermediate field region, a 1D periodic system shows the Weiss
oscillation, an oscillatory magnetoresistance from commensurability be-
tween the modulation period a and the cyclotron diameter 2Rc. In the
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case of RMF, we do not see such oscillation because there is no particular
modulation period. Instead, there is a characteristic length scale ξB of the
RMF correlation that correspond to a for a periodic system. The shoulder-
like structure is possibly related to the crossover of the cyclotron motion
with the RMF correlation length ξB.

The following magnetoresistance data taken for various RMF samples
are compatible with these pictures.

Dependence on gate voltage Figure 3.6 shows the results of similar
measurements with different gate voltages Vg. Each resistance curve is
rescaled with its B̄ = 0 value for comparison. With more positive Vg, the
structures in the magnetoresistance curve mentioned earlier become clearer.

Particularty the center cusp gets pronounced for Vg ≥ +100mV. Since
the gate voltage changes both the carrier density ne and the mobility µ of
the 2DES, it is difficult to single out the effect of either one. Instead, the
mean free path l = vFτ = (h̄/e)

√
2πne µ would be a good measure of the

transport property. The electron mean free path obtained for the above
data is l ≈ 2 µm at Vg = 0 mV, l ≈ 4 µm at Vg = +180 mV, while the RMF
correlation length is ξB ≈ 0.5 µm for this sample. It seems that the center
cusp requires an electron to travel several times the correlation length before
it is scattered away. In the context of snake orbit, the center cusp requires
the formation of well-defined snake orbits that experience more than few
sign alternation in the local field B(r).

Dependence on RMF amplitude and correlation length We have
done measurements on many samples with different patterns and thickness
of magnetic films on the 2DES Hall bar. These difference can be described
with two parameters, |δB| and ξB, that characterise the RMF. The condition
of the 2DES also differed sample by sample and this made the systematic
study difficult, but we can still grasp some tendency that support our semi-
classical picture in the magnetoresistance curves from the available data.

Figure 3.7 shows the magnetoresistance of three RMF samples with the
same lithographic pattern but with different thickness of the magnetic layer.
The magnetoresistance of a 2DES without magnetic film is also shown for
comparison. The gate voltage was adjusted before this measurement so that
the resistivity of the four samples are about the same value when the RMF
is off. The carrier densities and the mobilities take slightly different values
but are still close to each other. The resistivity at B̄ = 0 in the figure, with
the RMF turned on, is larger for the sample with larger RMF amplitude.

We can see from the figure that the positive magnetoresistance with
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Figure 3.6: Magnetoresistance with respect to B̄ for different gate voltages.
Traces are vertically shifted for clarity.

respect to B̄ is also larger for larger |δB|. In Fig.3.7(b), the trace near B̄
is enlarged. Here we find that the trace for |δB| = 27mT shows a signature
of the center cusp and the broad shoulders while that for |δB| = 88mT is
rather featureless in spite of the larger |δB|. This is because the RMF itself
diminishes the electron mean free path and smears out the fine structures
in the magnetoresistance.

Figure 3.8 shows the magnetoresistance of another four samples. The
carrier density, mobility, RMF amplitude and correlation length take various
values. This comes out as the variety in the vertical scale but let us focus
on the horizontal (B̄-) axis here. We can find the following features.

1. The broad shoulder appears at B̄ ≈ 0.05T for samples with ξB = 1µm,
and at B̄ ≈ 0.1T for samples with ξB = 0.5µm. This suggests that
this broad structure is related to the crossover of the cyclotron radius
Rc = kFl

2
B with the characteristic length ξB of the RMF. Cyclotron

radius is Rc ≈ 1.5µm and 0.7µm at B̄ = 0.05T and 0.1T, respectively.

2. The center cusp appears regardless of the modulation amplitude if the
electron mean free path is sufficiently long. Its width is approximately
|δB|. Snake orbits that meander along the B(r) = 0 contour, where
B(r) = B̄+δB(r), require the modulation amplitude |δB| to be larger
than the uniform background field B̄. The relation of the RMF am-
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Figure 3.7: Magnetoresistance of RMF samples with different RMF ampli-
tudes and a 2DES without RMF. (a) is the actual resistivity and (b) shows
the change from its B̄ = 0 value with vertical shifts.
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plitude with the width of the conter cusp gives further support to the
relevance of snake orbit to the center cusp.

Table 3.1: RMF correlation length ξB and cyclotron radius Rc at the broad
shoulder.

Sample ξB B̄ at shoulder Rc at shoulder

RMF 1µm 0.06T 1.5µm
RMF 0.5µm 0.12T 0.7µm

CF [37] 100nm 0.6T 160nm

Comparison with the composite fermion system Assuming that the
magnetoresistnace curve around the half-filled Landau level state in Fig.1.9
is of the same nature with our data, properties of the effective RMF in CF
system can be deduced. The magnetoresistance curve in Jiang et al.’s data
[37] is centered at B1/2 ≈ 13.4 T, with the center cusp between ≈ B1/2±0.2
T and the broad shoulder at ≈ B1/2 ± 0.6 T. The width of the center cusp
gives the amplitude |δB| ≈ 0.2 T of the effective RMF, which correspond to
the amplitude of local charge density fluctuation

δne(r)

ne
≈ |δB|

B1/2

≈ 0.2 T

13.4 T
≈ 1.5%. (3.1)

The CF cyclotron radius at the broad shoulder

RCF
c = kCF

F l2B =
h̄

e
×√

4πne × 1

0.6 T
≈ 160nm (3.2)

gives the measure of the RMF correlation length ξB. Here we used the
carrier density ne = 1.7×1015 m−2 taken from Ref. [37]. This agrees with
the argument that the RMF correlation length for the CF systems is about
100 nm because the density fluctuation is created by ionized impurities at
the doping layer typically located 100 nm away from the 2DES.

3.2.2 Shubnikov-de Haas oscillation

The amplitude ∆ρSdH of the Shubnikov-de Haas (SdH) oscillation, normal-
ized to classical resistivity ρ0 is well described by the formula [52, 53]

∆ρSdH

ρ0
=

AT

sinhAT
exp

(
− π

ωcτtot

)
. (3.3)
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Here, AT = 2π2kBT/h̄ωc accounts for thermal smearing, ωc = eB/m∗ is
the cyclotron frequency for effective mass m∗, and 1/τtot is the total scat-
tering rate. This expression is often used to deduce m∗ and τtot from the
temperature- and magnetic field dependence of the SdH amplitude, which
is experimentally available.

Du et al. adopted this formula to analyze the FQH oscillations around
ν = 1/2 and determined the effective mass m∗

CF of the composite fermion to
be about an order of magnitude larger than the band mass m∗ ≈ 0.067me of
GaAs [38]. They also argued that m∗

CF is dependent on magnetic field and
diverges toward the exact half filling at B = B1/2 [39]. Mancoff et al. [49]
performed the analysis with the SdH oscillation in their 2DES sample with
RMF produced with rough-surface ferromagnet. They did not find any
significant change in the electron effective mass and concluded that the
physics around ν = 1/2 may differ substantially from simple 2D transport
in RMF. The samples used by Mancoff et al., however, were such that the
electron mean free path was shorter than the characteristic length scale
of the RMF. In other words, the experimental situation in their samples
should be viewed as macroscopically inhomogeneous magnetic field rather
than true RMF.

It is therefore worthwhile to carry out a similar analysis on the data from
our samples which differ from those of Mancoff et al. in that the electron
mean free path is longer than the characteristic length scale of the RMF.
Figure 3.9 shows an example of the analysis procedure. We start from the
magnetoresistance described in Sec.3.2, measured at different temperatures
(Fig.3.9 (a)). The oscillating part is extracted by subtracting the smooth
background (Fig.3.9 (b)), and its extrema are taken as the SdH amplitudes
∆ρSdH. The subtracted background is also used as the classical resistivity ρ0

at each magnetic field. Figure 3.9 (c) shows the temperature dependence of
|∆ρSdH|/ρ0 for six different SdH extrema. Fitting to the T -dependent part
AT / sinhAT in the formula (3.3) yields the effective massm

∗ for each peak or
dip. For this particular set of data, it is found to be m∗/me = 0.075±0.002.
Figure 3.9 (d) is the so-called Dingle plot, which is a plot of

S = ln

[
∆ρSdH

4ρ0

· sinhAT

AT

]
(3.4)

against the inverse magnetic field B̄−1. Data from RMF sample, as well as
the data from control sample on the same specimen, are shown using the
effective mass obtained in the previous plot. The Dingle plot should fall on
a single straight line with the slope corresponding to the total scattering
rate 1/τtot, if the SdH amplitude is in accordance with (3.3). Both data
from RMF and control samples are well fitted by linear function, except for
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Figure 3.9: (a) Magnetoresistance with respect to five different temper-
atures. (b) Oscillating component extracted from (a). (c) Rescaled am-
plitudes of the SdH extrema plotted against temperature. (d) Dingle plot:
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the high-field region where the SdH oscillation crosses over to the QHE and
deviates from (3.3).

Table 3.2 summarises the effective mass m∗ and total scattering time τtot

determined from the SdH analysis together with the momentum relaxation
rate τ determined from the resistivity ρ0 = m∗/nee

2τ at B̄ = 0. Data from
Ref. [49] are also shown.

Table 3.2: Effective mass m∗ and total scattering time τtot obtained from
the analysis of SdH oscillation together with some relevant parameters.
Sample |δB| ξB m∗/me τtot τ

V2709 Control 0 — 0.074 1.84ps 14.2ps
V2709 RMF 27mT 1µm 0.074 0.94ps 13.2ps
V2710 RMF 50mT 1µm 0.074 0.56ps 10.9ps
V2707 RMF 88mT 1µm 0.072 0.50ps 8.5ps

V2717 Control 0 — 0.071 1.53ps 14.2ps
V2717 RMF 86mT 0.5µm 0.074 0.63ps 10.5ps

Mancoff [49] Control 0 — 0.06 0.94ps 38.1ps
Mancoff [49] RMF 100mT 20µm 0.06 0.32ps 3.8ps

The effective mass m∗ does not seem to show a significant change in the
presence of the RMF. This confirms the argument that the enhancement
of CF effective mass cannot be explained by the static RMF as realized in
this experiment. It implies that the mass enhancement is rather due to the
dynamical field fluctuation that arise from electron correlation.

Presence of RMF significantly reduces the total scattering time τtot than
the momentum relaxation rate τ . This implies that the RMF introduces
many small angle scattering events. Possible reason for the apparently op-
posite tendency of Mancoff et al.’s result to ours is that they have underes-
timated the momentum relaxation time τ in the presence of RMF because
zero-mean RMF could not be realized in their sample.

3.2.3 Effect of randomness on 1D modulation

In Sec.3.2.1, we have discussed the magnetoresistance in RMF by analogy
to those in 1D periodic MMF because the physics of 2DES in regular 1D
MMF is well established as we have seen in Sec.1.2. In this section, we
introduce randomness to the 1D MMF system in order to acquire better
understanding on the physics of 2DES in random magnetic field.
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The samples used here are 2DES Hall bar with ferromagnetic strips with
different degrees of randomness. The lithographical patterns to fabricate
these samples consist of lines and spaces, whose widths are varied randomly
within the range listed in Fig.3.10. Figure 3.10 also shows the scanning
electron micrograph of the four patterns, together with the Fourier spectra
of the calculated magnetic field profile.

(a)

Line Space

(b) Sample line space

LS04 0.2µm 0.3µm
LS05 0.2±0.05µm 0.3±0.05µm
LS06 0.2±0.1µm 0.3±0.1µm
LS07 0.2±0.2µm 0.3±0.2µm

(c) (d)
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Figure 3.10: (a) Schematic of the lithographical pattern for random 1D
MMF. (b) Parameters of the four samples. The lower pattern is more disor-
dered. (c) Scanning electron micrographs of the four samples. (d) Fourier
spectrum δB(K) of the expected MMF for the four samples.

The measurement of the magnetoresistance is done in the same way
as we did in Sec.3.2 for the magnetoresistance of RMF sample. Fig.3.11
shows the magnetoresistance with respect to B̄ in fixed modulation δB(r),
for the four samples listed above. The sample LS04 without randomness
shows a clear mangetic Weiss oscillation. The vertical lines indicate the
expected positions of the resistivity minima (1.16). The positive magne-
toresistance, or the downward “center cusp”, near B̄ = 0 with the snake
orbit (see Sec.1.2.2) is also observed. For samples LS05, LS06, and LS07
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Figure 3.11: Magnetoresistance of the four random 1D MMF samples.
Vertical lines indicate the expected dip positions for the regular one, LS04.

with increased randomness, the center cusp persists while the commensu-
rability oscillation becomes weaker and the main resistance minimum at
B̄ = 0.22 T turns into a broad shoulder-like structure similar to that seen
in RMF samples. For the sample LS07 with the largest extent of random-
ness, the overall shape of the magnetoresistance trace resembles that for
RMF samples. This implies that for random MMF, its dimensionality does
not lead to a qualitative difference in the magnetoresistance of the 2DES.
However a thorough understanding on these magnetoresistance needs more
investigation from the theoretical side.

3.2.4 Remarks on anisotropy

We have noted at the beginning of the chapter that the RMF realized in our
samples have some anisotropy associated with the azimuthal angle of the in-
plane field B‖. We can actually change the azimuthal angle by turning the
sample holder about its vertical axis. Fig.3.12 shows a magnetoresistance
for different azimuthal angles, φ = 0◦ and 90◦, where φ is defined as the
angle between B‖ and the direction of the current (x-axis). The features of
the two data are very similar except that the data for φ = 0◦ shows a larger
positive magnetoresistance.

The magnetic field profile shown in Fig.2.10 (page 28), which is calcu-
lated for φ = 0◦, exhibit many pairs of positive and negative field region
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Figure 3.12: Magnetoresistance for φ = 0◦ and φ = 90◦.

aligned in x-direction. This implies that the RMF in the case of φ = 0◦

contains more x-components in its Fourier spectrum. In other words, if the
Fourier spectrum of an isotropic RMF is expressed as an circle cloud with
the diameter about ξ−1

B , that for the RMF for φ = 0◦ is distorted in the
x-direction. As the x-component ρxx of the resistivity is mainly determined
from the modulation component in the x-direction, and ρyy from those in the
y-direction, the larger magnitude in the positive magnetoresistance is due
to the larger weight in the modulation component parallel to its direction.

On the other hand, the similarity of the two curves implies that the char-
acteristic features in the magnetoresistance curve are quite general among
certain class of RMF and that the magnetoresistance for isotropic RMF
would show a similar behavior without the difference in magnitude between
ρxx and ρyy.

3.3 Temperature dependence of the resistiv-

ity in zero-mean MMF

Recent experimental and theoretical studies on 1D perodic MMF [20,21] re-
vealed that a 2DES shows a T 2-dependent resistivity component in the pres-
ence of such modulation. The occurrence of T 2-dependent resistivity com-
ponent is explained that the MMF gives rise to umklapp electron-electron
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scattering events that change the total momentum and contribute to resis-
tivity. Such mechanism should be at work if the translational symmetry of
the system is broken, even if there is no specific modulation wave vector K
as in regular MMF.

In order to prove this idea, we have measured the temperature depen-
dence of 2DES in random 1D, regular 2D, and random 2D MMFs.

3.3.1 1D modulation

Figure 3.13(a) shows the temperature dependence of the resistivity of 1D
MMF samples LS04∼07, for the maximum modulation (azimuthal angle
of the in-plane field set at φ = 0◦) and no modulation (φ = 90◦). For
all samples the resistivity shows a non-linear increase with respect to the
temperature T only in the presence of the MMF. Figure 3.13(b) shows the
change in resistivity ∆ρ = ρ(φ = 0◦) − ρ(φ = 90◦) due to the MMF. A fit
of the ∆ρ for 3K < T < 10K to the form

∆ρ = AT 2 +BT + C (3.5)

gives the coefficients summarized in Table 3.3.

Table 3.3: Temperature dependence coefficient of the resistivity.
Sample ne(10

15m−2) µ(m2/Vs) A(Ω/K2) B(Ω/K) C(Ω)

LS04 1.804 43.1 0.071 −0.21 9.64
LS05 1.810 42.3 0.073 −0.19 10.75
LS06 1.810 42.3 0.083 −0.16 14.56
LS07 2.255 35.0 0.034 +0.06 16.26

Excepting the sample LS07, whose carrier density ne and mobility µ is
significantly different from the others, the coefficient A of the T -quadratic
term and the constant term C are both larger for larger degree of random-
ness. Introduction of randomness not only broadens the Fourier spectrum of
the MMF, but also shifts its center to the smallerK (longer wavelength) side
(Fig.3.10). Since the formula of the resistance increase (1.22) by Sasaki et
al. indicates that the modulation with longer wavelength contributes more
to both A and C terms, the shift in the Fourier spectrum of MMF may be
the reason for increased coefficients with randomness. However the validity
of Eq.(1.22) for the case of distributed Fourier components of modulation
have to be examined.
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Figure 3.13: (a) Temperature dependence of the resistivity of random 1D
MMF samples. The solid lines are for the maximum modulation and the
dotted lines indicated by φ = 90◦ are for no modulation. (b) Difference in
the resistance between the presence and absence of the MMF.
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3.3.2 2D modulations

Figure 3.14 shows the temperature dependence of a RMF sample studied in
Sec.3.1. Unlike the 1D MMF samples, the resistance appears to be linear
in T when the RMF is turned on by the in-plane field. We have also done a
similar measurement on a 2DES with regular 2D MMF, which also did not
show a T 2-dependent resistivity component.

0 5 10 15 20
80

100

120

140
Vg = 0mV

Sample V2717

RMF OFF

RMF ON

ρ xx
(Ω

)

T (K)

Figure 3.14: Temperature dependence of a RMF sample.

To see this, we plot the resistance increase ∆ρ from 2D MMF (including
RMF) as a function of temperature T in Fig.3.15 (a). Those from 1D
MMF are also shown as dotted lines for comparison. Though the resistivity
increase, or the constant term A, are of the same order of magnitude, the
temperature dependences are quite different. Note that the carrier density
ne ≈ 1.9×1015 m−2, mobility µ ≈ 40 m2/Vs and the resistivity ρ0 ≈ 90Ω
when the MMF are off are about the same for all the 2DES presented here.
We fit the ∆ρ for 2D MMF with the same expression (3.5). The coefficients
A, B, and C are summarized in Table 3.4. To see the qualitative difference
between 1D and 2D modulation, we plotted in Fig.3.15 (b) the coefficient A
of the T 2-term against the constant C term. It clearly tells that the T 2-term
is absent or very small for 2D modulations.

The observation of T 2-term in random 1D MMF seemed to support the
idea that any kind of modulation would lead to T 2-dependent resistivity
component, but the absence of such term in 2D MMF (both regular and
random) is in conflict with it.

∗Different MMF profile is realized on the same sample by changing the azimuthal
angle φ of the in-plane field B‖. φ = 0◦ for V2718a and φ = 90◦ for V2718b.
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Figure 3.15: (a) Resistivity increase ∆ρ of 1D and 2D MMF as a function
of temperature T . (b) Coefficient of T 2-term against constant term.
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Table 3.4: Temperature dependence coefficient of the resistivity.

Sample ne(m
−2) µ(m2/Vs) A(Ω/K2) B(Ω/K) C(Ω)

V2717 RMF 1.833×1015 39.8 0.021 0.403 36.02
V2707 RMF 1.991×1015 32.2 0.018 0.570 43.99
V2710 RMF 1.956×1015 34.3 0.006 0.272 19.09
V2709 RMF 1.887×1015 37.2 −0.005 0.137 7.32

V2718a∗ 2DMMF 1.784×1015 40.6 0.005 0.190 12.80
V2718b∗ 2DMMF 1.784×1015 40.6 −0.006 0.215 5.27

For electrostatic modulations, T 2-term is also observed for 1D modu-
laton [18] but not for 2D modulations. Moreover, the random impurity
responsible for a large part of the residual resistivity at low temperture
does not give rise to the T 2-term. Therefore the T 2-term may be partic-
ular to 1D modulations. 1D modulations are modulations such that the
anisotropy becomes maximum. Though our 2D MMF and RMF samples
have some anisotropy it should be much smaller than the 1D MMF samples.
It is possible that anisotropy plays an important role in the occurence of the
T 2-term. But the reason for the qualitative difference in the temperature
dependence is not clear at the moment and we hope a further progress of
the theoretical investigation on this topic.
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Chapter 4

Conclusion

In this thesis we studied the high-mobility semiconductor two-dimensional
electron systems (2DES) in spatially modulated magnetic field (MMF), with
special interest in random magnetic field (RMF). In order to produce MMFs
in a controlled fashion, micropatterened film of non-hysteretic magnetic
alloy, DyCu, was fabricated on 2DES Hall bars.

With the introduction of RMF, the resistance of the 2DES showed an in-
crease with a quadratic dependence on the modulation amplitude. A cross-
coil magnet system enabled us to study the magnetoresistance of a 2DES
with fixed MMF component δB(r) as a function of uniform field component
B̄. A 2DES with RMF showed a large positive magnetoresistance which look
very similar to those observed around the half-filled Landau level state of
unmodulated 2DES. This supports the idea of mapping composite fermion
in random potential to electron in random magnetic field. Our data also
suggests that the characteristic structure of the magnetoresistance curve is
of classical nature associated to the cyclotron motion of electron. Analysis
of Shubnikov-de Haas oscillation implies that the RMF does not signifi-
cantly alter the electron effective mass and therefore is not likely to account
for the reported mass enhancement of the composite fermion.

Introduction of randomness to one-dimensional MMF smears out the
well-known commensurability oscillation in the magnetoresistance and
changes it to a broad positive one, similar to that seen in two-dimensional
RMF systems. However the temperature dependence of the resistance of
2DES with one-dimensional and two-dimensional MMF showed a qualita-
tive difference that the T 2-dependent term observed in the former did not
show up in the latter.
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