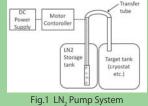
Developement and Fabrication of Liquid Nitrogen Draw Pump 2

<u>M Abe</u>[,], T Takayama[,], R Sagiyama[,], H Tsuchiya[,], Y Torii[,], M Nakamura[,], Y Hoshino[,], Y Odashima[,]

a) Department of Basic Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan

b) Institute for Solid State Physics, University of Tokyo, 5-5 Kashiwanoha, Kashiwa, Chiba 277-8581 Japan c) Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 Japan

d) OMNIX, 1-15-3 Nishishinjuku, Shinjuku, Tokyo 160-0023 Japan e) YN Nakamura Ltd, 3-9-25 Ohjima, Koto, Tokyo 136-0072 Japan


f) JECC TORISHA Co. Ltd, 2-8-52 Yoshinodai, Kawagoe-shi, Saitama 350-0833 Japan

1. Purpose

How to transfer Liquid Nitrogen (LN₂) from a container to a cryostat are generally...

- (1) Apply pressure to the container to push out liquid under the differential pressure,
 - (2) Pour liquid into the cryostat by lifting the container.

To overcome these inconveniences in a laboratory, we have been developing a portable LN, centrifugal pump which is small and less costly.

2. Test and Result

2. Test and Result		Pump A	Pump B
We prepared two pumps, A and B, to compare and clarify factors in operation. <u>Specification and results</u> of tests are summarized on the table briefly. <u>Assembly of the pump</u> The impeller(7) scatters cryogen continuously, then scattered cryogen flows the gap between the motor(5) and the casing wall(4).		(A) Fig.3 Pump A	
1 Transfer Tube		(A)with transfer tube (B)overhauled	Fig.4 Pump B (overhauled)
2 Reduc 3 Space 4 Casin 5 space 7 impel 8 casin with a Fig.2 Pump A (Pump B has same	r g r ler g cap an inlet hole (schematic)	Fig.5 Test setup of Pump A Right: storage tank (alloyed Al.) Left: target tank (stainless)	Fig.6 Test setup of Pump B storage : glass insulated dewar tank
	Motor's power ^{*1}	6 - 8 W	15 W
	Rotation at test	9000 - 12000 rpm	10000 - 37000 rpm
	Impeller material, height	POM ^{*2} , 8 mm	POM, 10 mm
	in/out radius	6 mm/11mm	2.5mm/8mm
	Casing material, length	PVC*3, 92mm	PVC, 91mm
	in/out diameter	25mm/26mm	19mm/24mm
	Inlet hole diameter	8mm	12mm
DC blushless motor polyoxymethylene	Transf. tube material, length	PVC, 800 mm	glass insulated tube, 1000 mm
polyvinyl chloride	in/out diameter	13mm/26mm	4mm/12mm
The discharge volume rate largely	Storage tank entrance diam., vol.	28mm, 50L	54mm, 22L
bended on the shapes of the casing and the	Target tank entrance diam., vol.	24mm, 50L	185mm, 6L
acer as for the test on Pump B.	Total heads	more than 800mm	more than 1000mm
	Discharge volume rate	4 L/min	0.3 - 1.8 L/min ^{*4}
6. Conclusion			

3. Conclusion

*1 DC blus *2 polyoxy *3 polyviny *4 The dis depended spacer as f

> We have succeeded in development of the LN₂ centrifugal pumps with small radii and enough total heads to transfer LN₂ without pressuring cryostats.

Points to examine next:

(1) The characteristics of the discharge volume rate on the input power or motor rotation

(2) How the inside shape influences the discharge volume rate

(3) The flush loss of LN_2 during the operation

We also have a plan to apply the pump to liquid helium transfer in the future.